
 1

Random Number Generation
on a Decimal Computer

Ronald Mak

Department of Computer Engineering
Department of Computer Science

Department of Applied Data Science
San José State University

ron.mak@sjsu.edu
http://www.cs.sjsu.edu/~mak

November 15, 2019
[Updated November 20, 2019]

I propose a rapid algorithm to generate uniformly distributed random numbers that
is suitable for a decimal computer, specifically the IBM 1401 computer. I employ
simple statistical methods to demonstrate the viability of this algorithm. Then I
show that it is easy to convert the uniformly distributed random numbers to
normally distributed random numbers., i.e., numbers that fit a bell curve.

1. Introduction
The IBM 1401 was an early 1960s era transistor-based small-business computer. It supported a
maximum of 16 KB of core memory, and it had an 87 KHz machine cycle – extremely miniscule
and painfully slow compared to today’s computers. It had a decimal-based architecture and could
store a single digit 0 – 9 as an 8-bit character. Each digit took 6 bits of the character, plus there
was a parity bit and a “word mark” bit. Numbers were arbitrarily long; a number was addressed
by its rightmost digit and the leftmost digit had its word mark bit set. Today, we would call each
character a “byte”, each number a “string decimal”, and say that the IBM 1401 performed “string
decimal arithmetic”.

The IBM 1401 had basic add and move machine instructions, but no bitwise shift or “and” or “or”
instructions. Multiplication and division were slow operations, and floating-point operations were
done by software routines. Therefore, an efficient algorithm designed to run on that machine
should rely primarily on adds and moves. Arithmetic operations on numbers and moves of numbers
from one memory location to another were delimited by word marks. There were machine
instructions to set and clear a word mark as needed at any particular memory address.

2. An algorithm to generate uniformly distributed random values
My random number algorithm relies on rotating 7-digit numbers to the right by 3 digits and by 5
digits. Note that 3, 5, and 7 are prime numbers.

To rotate a 7-digit number to the right by 3 digits on the IBM 1401, store the number in memory
at the left end of a 10-character buffer. For example, to rotate the number 1234567:

 2

1234567xxx

Move the number right 3 characters to the right:

1231234567

Move the rightmost 3 characters of the buffer to the beginning of the buffer:

5671234567

Then the leftmost 7 characters of the buffer contain the rotated number 5671234. Therefore, each
rotation requires two moves.

Rotating a 7-digit number to the right is similar, except that you start with the number at the left
end of a 12-character buffer. For example, rotating the number 1234567 yields 3456712.

Steps of the algorithm:

1. Start with two nonzero 7-digit seed
values, call them r1 and r2.

2. Rotate r1 to the right by 3 characters and
rotate r2 to the right by 5 characters.

3. Add the two rotated numbers to product a
7-digit sum (drop any overflowed digits
at the left).

4. Digits at the left end of sum constitute a
random value. If, for example, you want
2-digit random numbers, take the leftmost
two digits.

5. Set r1 to the value of r2, and set r2 to
the value of sum.

6. Go back to step 2 and iterate as many
times as desired. Each iteration produces
one random value.

To the right is an example of the first three
iterations to generate 2-digit random values.

r1 = 1234567 # seed
r2 = 8901234 # seed

ITERATION #1

r1 = 5671234 # rotated right 3
r2 = 0123489 # rotated right 5
sum = 5794723 # sum = r1 + r2

*** random value = 57

r1 = 0123489 # r1 = r2
r2 = 5794723 # r2 = sum

ITERATION #2

r1 = 4890123 # rotated right 3
r2 = 9472357 # rotated right 5
sum = 4362480 # sum = r1 + r2

*** random value = 43

r1 = 9472357 # r1 = r2
r2 = 4362480 # r2 = sum

ITERATION #3

r1 = 3579472 # rotated right 3
r2 = 6248043 # rotated right 5
sum = 9827515 # sum = r1 + r2

*** random value = 98

r1 = 6248043 # r1 = r2
r2 = 9827515 # r2 = sum

 3

3. Python implementation
I implemented the algorithm in Python and generated a million 2-digit random values. I used
Python’s standard integer datatype, so I did the rotations with integer multiplication, division, and
modulo operations with powers of 10. As mentioned above, on the IBM 1401, only moves are
required to do the rotations.

4. Basic statistical confirmation
We need to confirm that we did indeed generate uniformly distributed random values. First, some
basic statistics:

It’s indeed a good sign that the mean (arithmetic average) is very close to 50, the first and second
quartiles hit their marks, and the third quartile is off by only 1.

rvs = [] # list to contain the random values, initially empty

r1 = 1234_567 # seed
r2 = 89_01234 # seed

Loop to generate a million random values.
for i in range(1_000_000):
 r1 = 10000*(r1%1000) + r1//1000 # rotate right 3 digits
 r2 = 100*(r2%100000) + r2//100000 # rotate right 5 digits

 sum = (r1 + r2)%10000000 # add, and keep the sum to 7 digits
 rvs.append(sum//100000) # append the leftmost 2-digit number to list rvs

 r1 = r2
 r2 = sum

print(f'The first 20 random values:')
print(f'{rvs[:20]}')

The first 20 random values:
[57, 43, 98, 31, 47, 30, 81, 92, 80, 25, 65, 4, 31, 30, 48, 60, 40, 4, 16, 5]

import statistics
import numpy as np

print(f' mean = {statistics.mean(rvs):.2f}')
print(f' first quartile = {np.percentile(rvs, 25)}')
print(f'second quartile = {np.percentile(rvs, 50)}')
print(f' third quartile = {np.percentile(rvs, 75)}')

 mean = 49.50
 first quartile = 25.0
second quartile = 50.0
 third quartile = 74.0

 4

Here’s a frequency bar chart of all the values. They do appear to be uniformly distributed!

Even though the final result appears valid, let’s make sure that the values were generated in random
order not in clumps or in a pattern. Here are scatter plots that show the generation order of the first
100 generated values, 100 values near the middle, and 100 values near the end:

import matplotlib.pyplot as plt
import seaborn as sns

def show_chart(title, x_label, y_label, x_values, y_values, size=(10, 5)):
 """
 Display a bar chart.
 @param title the chart title.
 @param x_label the label for the x axis
 @param y_label the label for the y axis
 @param x_values the x values to plot
 @param y_values the y values to plot
 @param size the size (width, height) of the chart
 """
 figure = plt.figure(figsize=size)

 axes = sns.barplot(x_values, y_values, color='green', alpha=0.75)
 axes.set_title(title)
 axes.set(xlabel=x_label, ylabel=y_label)

freq = [0]*100
for v in rvs:
 freq[v] += 1

show_chart('Decimal-Based Random Values', 'Value', 'Frequency',
 list(range(100)), freq, size=(25, 5))

xs = [list(range(100))]
ys = rvs[0:100]

plt.scatter(xs, ys)
plt.show()

 5

The values in these three samples do appear to have been generated in random order.

5. Generate normally distributed random values
It is very simple and efficient to extend the above algorithm to also generate normally distributed
random values, values that fit a bell curve.

As the uniformly distributed random values are being generated, add them together in groups of
one hundred – the first through 100th values, the 101st through 200th values, etc. Keep all the digits
of each sum. Compute the average of each group by dividing its sum by 100. Of course, on the
IBM 1401, that “division” is done by not including the last two digits of the sum.

According to the Central Limit Theorem of statistics, these group averages are normally distributed
random values.

In the Python implementation, I computed group averages separately at the end using the uniformly
distributed random values stored in list rvs:

xs = list(range(500_000, 500_100))
ys = rvs[500_000:500_100]

plt.scatter(xs, ys)
plt.show()

xs = list(range(999_800, 999_900))
ys = rvs[999_000:999_100]

plt.scatter(xs, ys)
plt.show()

import statistics

stdev = int(statistics.stdev(rvs))
offset = int(statistics.mean(rvs)) - stdev//2;
limit = offset + stdev

freq = [0]*stdev

Loop to compute the average of each group of 100 random values.
for lo in list(range(0, 1_000_000, 100)):
 hi = lo + 100
 mean = int(statistics.mean(rvs[lo:hi]))

 if (mean >= offset) and (mean < limit):
 freq[mean - offset] += 1

show_chart('Normally Distributed Random Values', 'Value', 'Frequency',
 list(range(offset, limit)), freq, size=(15, 5))

 6

6. IBM 1401 Autocoder implementation
[Added November 20, 2019]

Autocoder program by Michael Albaugh. Assembled and run under ROPE 1401 simulation.

 7

 job 1401 PRNG FROM RON MAK
 * Assemble with command
 * autocoder -l MakRand.lis -o MakRand.obj -bV ctload.ac
 CTL 6111
 * INDEX REGISTERS
 ORG 87
 X1 DCW @000@ POSITION IN LP BUFFER
 ORG 92
 X2 DCW @000@
 ORG 97
 X3 DCW @000@
 ORG 333
 * WORKING STORAGE
 ACC DCW @0000000@
 SUM DCW @0000000@
 *
 * USES TWO 7-DIGIT SEEDS
 R1 DCW @1234567@
 R2 DCW @8901234@
 *
 * TEST CODE
 ORG 400
 START MCW @000@,X1
 LLOOP B MAKRND
 MCW SUM-5,203&X1
 SBR X1,3&X1
 C @060@,X1
 BU LLOOP
 W
 CS 332
 CS
 H
 * PRNG PROPER
 ORG 500
 MAKRND SBR MRRTN&3 SAVE RETURN ADDRESS
 * ROTATE R1 RIGHT BY THREE CHARACTERS.
 MCW R1-3,ACC MOVE NUM MSDS TO ACC LSDS
 MCW R1 MOVE NUM LSDS TO ACC MSDS (CHAIN)
 MCW ACC,R1
 * ROTATE R2 RIGHT BY FIVE CHARACTERS
 MCW R2-5,ACC MOVE NUM MSDS TO ACC LSDS
 MCW R2 MOVE NUM LSDS ACC MSDS (CHAIN)
 MCW ACC,R2
 MCW R2,SUM
 A R1,SUM
 MZ @0@,SUM-6 IGNORE OVERFLOW
 MCW R2,R1
 MCW SUM,R2
 MRRTN B MRRTN RETURN TO CALLER
 END START

