
CS 146: Data Structures and Algorithms
July 14 Class Meeting

Department of Computer Science
San Jose State University

Summer 2015
Instructor: Ron Mak

www.cs.sjsu.edu/~mak

http://www.cs.sjsu.edu/~mak

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

2

Review of Sorting Algorithms

 Insertion sort
 Shellsort
 Heapsort
 Mergesort
 Quicksort

 What is going on with these sorts?

Demo

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

3

Analysis of Quicksort

T(N) =
1 if N = 0 or 1
T(i) + T(N – i –1) + cN if N > 1{

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

4

Analysis of Quicksort

 The performance of quicksort is
highly dependent on ...
 ... the quality of the choice of pivot.

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

5

Quicksort: Best Case Analysis

 The pivot is always the median. Each subarray is the same size.

cNNTNT )2/(2)(

Divide through by N:

Add and cancel (there are log N equations):

Telescope:

c
N

NT

N

NT


2/

)2/()(

c
N

NT

N

NT


4/

)4/(

2/

)2/(

c
N

NT

N

NT


8/

)8/(

4/

)4/(

c
TT


1

)1(

2

)2(

Nc
T

N

NT
log

1

)1()(


T (N) = N + cN log N =q (N log N)

Therefore:

T(N) =
1 if N = 0 or 1
T(i) + T(N – i –1) + cN if N > 1{

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

6

Quicksort: Average Case Analysis

 Each size for a subarray after partitioning is equally likely,
with probability 1/N:







1

0

)(
1

)1(
N

j

jT
N

iNT

cNjT
N

NT
N

j









 





1

0

)(
2

)(

2
1

0

)(2)(cNjTNNT
N

j









 





2
2

0

)1()(2)1()1(







 





NcjTNTN
N

j

ccNNTNTNNNT  2)1(2)1()1()(

(a)

(b)

Subtract (a) – (b):

T(N) =
1 if N = 0 or 1
T(i) + T(N – i –1) + cN if N > 1{

Since there are
two partitions:

Multiply by N:

Substitute N by N-1:

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

7

Quicksort: Average Case Analysis, cont’d
ccNNTNTNNNT  2)1(2)1()1()(

cNNTNNNT 2)1()1()(

1

2)1(

1

)(







 N

c

N

NT

N

NT

Rearrange and drop the insignificant –c:

Divide through by N(N+1):

N

c

N

NT

N

NT 2

1

)2()1(








1

2

2

)3(

1

)2(











N

c

N

NT

N

NT

3

2

2

)1(

3

)2(cTT


Telescope:

Add and cancel

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

8

Quicksort: Average Case Analysis, cont’d

Recall the harmonic number:









1

3

1
2

2

)1(

1

)(N

i i
c

T

N

NT
Add and cancel:

N
i e

N

i

log
11

3






)(log
1

)(
NO

N

NT




)log()(NNONT 

And so:

Therefore:

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

9

Quicksort: Worst Case Analysis

 The pivot is always the smallest value of the partition, and so i = 0.

cNNTNT )1()(

)1()2()1( NcNTNT

)2()3()2( NcNTNT

)2()1()2(cTT 

Telescope:

)()1()(2

2

NicTNT
N

i

 


Add and cancel:

T(N) =
1 if N = 0 or 1
T(i) + T(N – i –1) + cN if N > 1{

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

10

Quicksort: Worst Case Analysis, cont’d

 The pivot is always the smallest value of the partition, and so i = 0.

)()1()(2

2

NicTNT
N

i

 


T(N) =
1 if N = 0 or 1
T(i) + T(N – i –1) + cN if N > 1{

 How does this explain the very bad behavior of
quicksort when the data is already sorted?

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

Quicksort: Worst Case Analysis, cont’d

11

N = 100,000

 ALGORITHM MOVES COMPARES MILLISECONDS
 Insertion sort 0 99,999 0
 Shellsort suboptimal 0 1,500,006 4
 Shellsort Knuth 0 967,146 4
 Heap sort 1,900,851 3,882,389 12
 Merge sort array 3,337,856 853,904 17
 Merge sort linked list 1,115,021 815,024 29
 Quicksort suboptimal 400,000 5,000,150,000 4,857
 Quicksort optimal 400,000 1,968,946 6

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

12

Assignment #5

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

13

Assignment #5, cont’d

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

14

Assignment #5, cont’d

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

15

Assignment #5, cont’d

 You may choose a partner to work with you
on this assignment.
 Both of you will receive the same score.

 Email your answers to ron.mak@sjsu.edu
 Subject line:

CS 146 Assignment #5: Your Name(s)
 CC your partner when you email your solution.

 Due Friday, July 24 at 11:59 PM.

mailto:ron.mak@sjsu.edu

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

Break

16

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

17

A General Lower Bound for Sorting

 Any sorting algorithm that uses
only comparisons requires Ω(N log N)
comparisons in the worst case.

 Prove: Any sorting algorithm that uses only
comparisons requires comparisons
in the worst case and log(N!) comparisons
on average.

 )!log(N

log(N!) = Ω(N log N)

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

A General Lower Bound for Sorting, cont’d

 Every sorting algorithm
that uses only comparisons

can be represented by a
decision tree.

 The number of
comparisons is
equal to the
depth of the
deepest
leaf.

18Data Structures and Algorithms in Java, 3rd ed.
by Mark Allen Weiss
Pearson Education, Inc., 2012

How many
possible
combinations
for 3 elements?

3!

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

Some Decision Tree Properties

 A binary tree of depth d has at most 2d leaves.

 A binary tree with L leaves must have depth
at least .

 Any sorting algorithm that uses only
comparisons between elements requires at
least comparisons in the worst case.

 A decision tree to sort N elements
must have N! leaves.

19

log Léê ùú

log N!()éê ùú

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

A General Lower Bound for Sorting, cont’d

 Prove: Any sorting algorithm that uses only
comparisons between elements requires
Ω(N log N) comparisons.

20

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

21

A General Lower Bound for Sorting, cont’d

)log()3log()2log()1log()321log()!log(NNN 

N
NNN

log2
2

log1
2

log
2

log 





 






 





































2
log

2
log

2
log

2
log

NNNN

   
2

log
2

1)(log
2

2log
22

log
2

1 N
N

N
N

N
N

NNN







 

)log()!log(NNN 

Delete the first half of the terms:

Replace each remaining term by the smallest one, log(N/2):

There are N/2 of these log(N/2) terms:

Therefore:

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

22

A General Lower Bound for Sorting, cont’d

 Therefore, you cannot devise a sorting
algorithm based on comparing elements that
will be faster than Ω(N log N) in the worst case.

)log()!log(NNN 

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

23

Bucket Sort and Radix Sort

 Bucket sorting relies on using a number of bins,
or buckets, into which the values to be sorted
are entered.

 Sorting time is linear rather than O(N log N).
 Does not rely on comparisons.

 A form of bucket sort is the radix sort.
 Used to sort values each of which has

a limited number of characters.
 Example: 3-digit numbers.

 Radix sort was used by the old electromechanical
IBM card sorters to sort punched cards.

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

24

IBM 083 Card Sorter

 1950s vacuum-tube and mechanical technology.
 Sorted up to 1000 cards per minute.

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

25

Punched Cards

 A punched card had up to 12 punches per column,
numbered 0-9 and 11 and 12.
 The card sorter had 12 bins (plus a reject bin).

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

26

Sorting Punched Cards

 How to sort cards punched with 3-digit numbers

(in the same columns):

 First sort on the units digit.
 Each card drops into the appropriate bin based on the units digit.
 Carefully remove the cards from the bins, keeping them in order.

 Next sort on the tens digit.
 Each card drops into the appropriate bin based on the 10s digit.
 Carefully remove the cards from the bins, keeping them in order.

 Finally sort on the hundreds digit.
 Each card drops into the appropriate bin based on the 100s digit.
 Carefully remove the cards from the bins, keeping them in order.

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

27

Radix sorting
with an old
electromechanical
punched card sorter.

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

28

Magnetic Tape Sorting

 Most magnetic tapes can be read and written
in one direction only.
 You can also rewind a tape.

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

Magnetic Tape Sorting, cont’d

29

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

30

Magnetic Tape Sorting, cont’d

 Suppose you have data you want to sort.
 The unsorted data records initially all reside

on one magnetic tape.

 You have 4 tape drives and 3 blank tapes.
 The computer’s memory can hold and sort

only 3 data records at a time.

 Perform an external merge sort.

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

31

Magnetic Tape Merge Sort

T1 81 94 11 96 12 35 17 99 28 58 41 75 15

T2

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

11 81 94

12 35 96

17 28 99

41 58 75

15

11 12 35 81 94 96

17 28 41 58 75 99

15

Can you follow
what’s happening?
(These slides
are animated.)

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

32

Magnetic Tape Merge Sort, cont’d

T1 11 12 35 81 94 96 15

T2 17 28 41 58 75 99

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

11 12 17 28 35 41 58 75 81 94 96 99

15

11 12 15 17 28 35 41 58 75 81 94 96 99

	CS 146: Data Structures and Algorithms July 14 Class Meeting
	Review of Sorting Algorithms
	Analysis of Quicksort
	Slide 4
	Quicksort: Best Case Analysis
	Quicksort: Average Case Analysis
	Quicksort: Average Case Analysis, cont’d
	Slide 8
	Quicksort: Worst Case Analysis
	Quicksort: Worst Case Analysis, cont’d
	Slide 11
	Assignment #5
	Assignment #5, cont’d
	Slide 14
	Slide 15
	Break
	A General Lower Bound for Sorting
	A General Lower Bound for Sorting, cont’d
	Some Decision Tree Properties
	Slide 20
	Slide 21
	Slide 22
	Bucket Sort and Radix Sort
	IBM 083 Card Sorter
	Punched Cards
	Sorting Punched Cards
	
	Magnetic Tape Sorting
	Magnetic Tape Sorting, cont’d
	Slide 30
	Magnetic Tape Merge Sort
	Magnetic Tape Merge Sort, cont’d

