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Review of Sorting Algorithms

 Insertion sort
 Shellsort
 Heapsort
 Mergesort
 Quicksort

 What is going on with these sorts?

Demo
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Analysis of Quicksort

T(N) =
1 if N = 0 or 1
T(i) + T(N – i –1) + cN if N > 1{
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Analysis of Quicksort

 The performance of quicksort is 
highly dependent on ...
 ... the quality of the choice of pivot.
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Quicksort: Best Case Analysis

 The pivot is always the median. Each subarray is the same size.
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T (N ) = N + cN log N =q (N log N )

Therefore:

T(N) =
1 if N = 0 or 1
T(i) + T(N – i –1) + cN if N > 1{
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Quicksort: Average Case Analysis

 Each size for a subarray after partitioning is equally likely, 
with probability 1/N:
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Subtract (a) – (b):

T(N) =
1 if N = 0 or 1
T(i) + T(N – i –1) + cN if N > 1{

Since there are
two partitions:

Multiply by N:

Substitute N by N-1:
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Quicksort: Average Case Analysis, cont’d
ccNNTNTNNNT  2)1(2)1()1()(
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Telescope:

Add and cancel
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Quicksort: Average Case Analysis, cont’d

Recall the harmonic number:
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And so:

Therefore:
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Quicksort: Worst Case Analysis

 The pivot is always the smallest value of the partition, and so i = 0.
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T(N) =
1 if N = 0 or 1
T(i) + T(N – i –1) + cN if N > 1{
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Quicksort: Worst Case Analysis, cont’d

 The pivot is always the smallest value of the partition, and so i = 0.
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T(N) =
1 if N = 0 or 1
T(i) + T(N – i –1) + cN if N > 1{

 How does this explain the very bad behavior of 
quicksort when the data is already sorted?
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Quicksort: Worst Case Analysis, cont’d
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N = 100,000

                ALGORITHM          MOVES       COMPARES   MILLISECONDS
           Insertion sort              0         99,999              0
     Shellsort suboptimal              0      1,500,006              4
          Shellsort Knuth              0        967,146              4
                Heap sort      1,900,851      3,882,389             12
         Merge sort array      3,337,856        853,904             17
   Merge sort linked list      1,115,021        815,024             29
     Quicksort suboptimal        400,000  5,000,150,000          4,857
        Quicksort optimal        400,000      1,968,946              6
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Assignment #5
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Assignment #5, cont’d
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Assignment #5, cont’d
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Assignment #5, cont’d

 You may choose a partner to work with you 
on this assignment.
 Both of you will receive the same score.

 Email your answers to ron.mak@sjsu.edu 
 Subject line: 

CS 146 Assignment #5: Your Name(s)
 CC your partner when you email your solution.

 Due Friday, July 24 at 11:59 PM.

mailto:ron.mak@sjsu.edu
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A General Lower Bound for Sorting

 Any sorting algorithm that uses 
only comparisons requires Ω(N log N) 
comparisons in the worst case.

 Prove: Any sorting algorithm that uses only 
comparisons requires               comparisons 
in the worst case and log(N!) comparisons 
on average.

 )!log(N

log(N!) = Ω(N log N)
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A General Lower Bound for Sorting, cont’d

 Every sorting algorithm 
that uses only comparisons 

can be represented by a
decision tree.

 The number of
comparisons is
equal to the
depth of the
deepest 
leaf.

18Data Structures and Algorithms in Java, 3rd ed. 
by Mark Allen Weiss 
Pearson Education, Inc., 2012

How many 
possible 
combinations
for 3 elements?

3!
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Some Decision Tree Properties

 A binary tree of depth d has at most 2d leaves.

 A binary tree with L leaves must have depth
at least           .

 Any sorting algorithm that uses only 
comparisons between elements requires at 
least                comparisons in the worst case.

 A decision tree to sort N elements 
must have N! leaves.

19

log Léê ùú

log N!( )éê ùú



Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

A General Lower Bound for Sorting, cont’d

 Prove: Any sorting algorithm that uses only 
comparisons between elements requires 
Ω(N log N) comparisons.

20



Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

21

A General Lower Bound for Sorting, cont’d
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Delete the first half of the terms:

Replace each remaining term by the smallest one, log(N/2):

There are N/2 of these log(N/2) terms:

Therefore:
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A General Lower Bound for Sorting, cont’d

 Therefore, you cannot devise a sorting 
algorithm based on comparing elements that 
will be faster than Ω(N log N) in the worst case.

)log()!log( NNN 
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Bucket Sort and Radix Sort

 Bucket sorting relies on using a number of bins, 
or buckets, into which the values to be sorted 
are entered.

 Sorting time is linear rather than O(N log N).
 Does not rely on comparisons.

 A form of bucket sort is the radix sort.
 Used to sort values each of which has 

a limited number of characters.
 Example: 3-digit numbers.

 Radix sort was used by the old electromechanical 
IBM card sorters to sort punched cards.
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IBM 083 Card Sorter

 1950s vacuum-tube and mechanical technology.
 Sorted up to 1000 cards per minute.
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Punched Cards

 A punched card had up to 12 punches per column, 
numbered 0-9 and 11 and 12.
 The card sorter had 12 bins (plus a reject bin).
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Sorting Punched Cards

 How to sort cards punched with 3-digit numbers 

(in the same columns):

 First sort on the units digit.
 Each card drops into the appropriate bin based on the units digit.
 Carefully remove the cards from the bins, keeping them in order.

 Next sort on the tens digit.
 Each card drops into the appropriate bin based on the 10s digit.
 Carefully remove the cards from the bins, keeping them in order.

 Finally sort on the hundreds digit.
 Each card drops into the appropriate bin based on the 100s digit.
 Carefully remove the cards from the bins, keeping them in order.
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Radix sorting 
with an old
electromechanical
punched card sorter.
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Magnetic Tape Sorting

 Most magnetic tapes can be read and written 
in one direction only.
 You can also rewind a tape.
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Magnetic Tape Sorting, cont’d

29
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Magnetic Tape Sorting, cont’d

 Suppose you have data you want to sort.
 The unsorted data records initially all reside 

on one magnetic tape.

 You have 4 tape drives and 3 blank tapes.
 The computer’s memory can hold and sort 

only 3 data records at a time.

 Perform an external merge sort.
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Magnetic Tape Merge Sort 

T1 81 94 11 96 12 35 17 99 28 58 41 75 15

T2

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

11 81 94

12 35 96

17 28 99

41 58 75

15

11 12 35 81 94 96

17 28 41 58 75 99

15

Can you follow
what’s happening?
(These slides
are animated.)
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Magnetic Tape Merge Sort, cont’d

T1 11 12 35 81 94 96 15

T2 17 28 41 58 75 99

T3

T4

T1

T2

T3

T4

T1

T2

T3

T4

11 12 17 28 35 41 58 75 81 94 96 99

15

11 12 15 17 28 35 41 58 75 81 94 96 99
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