CS 146: Data Structures and Algorithms July 14 Class Meeting

Department of Computer Science
San Jose State University
Summer 2015
Instructor: Ron Mak
www.cs.sjsu.edu/~mak

Review of Sorting Algorithms

- Insertion sort
- Shellsort
- Heapsort
- Mergesort
- Quicksort
\square What is going on with these sorts?

Analysis of Quicksort

- What is the running time to quicksort a list of N ?
- Partition the array into two subarrays (constant $c N$ time).
- A recursive call on each subarray.
- A recurrence relation:

$$
T(N)= \begin{cases}1 & \text { if } N=0 \text { or } 1 \\ T(i)+T(N-i-1)+c N & \text { if } N>1\end{cases}
$$

- where i is the number of values in the left partition.

Analysis of Quicksort

- The performance of quicksort is

 highly dependent on ...- ... the quality of the choice of pivot.

Quicksort: Best Case Analysis

$$
T(N)= \begin{cases}1 & \text { if } N=0 \text { or } 1 \\ T(i)+T(N-i-1)+c N & \text { if } N>1\end{cases}
$$

- The pivot is always the median. Each subarray is the same size.

$$
T(N)=2 T(N / 2)+c N \mid \quad \text { Add and cancel (there are } \log N \text { equations): }
$$

Divide through by N :

$$
\frac{T(N)}{N}=\frac{T(N / 2)}{N / 2}+c
$$

Telescope:

$$
\begin{aligned}
\frac{T(N / 2)}{N / 2} & =\frac{T(N / 4)}{N / 4}+c \\
\frac{T(N / 4)}{N / 4} & =\frac{T(N / 8)}{N / 8}+c \\
& \bullet \\
\frac{T(2)}{2} & =\frac{T(1)}{1}+c
\end{aligned}
$$

Quicksort: Average Case Analysis

$$
T(N)= \begin{cases}1 & \text { if } N=0 \text { or } 1 \\ T(i)+T(N-i-1)+c N & \text { if } N>1\end{cases}
$$

- Each size for a subarray after partitioning is equally likely, with probability $1 / N$:

$$
T(N-i-1)=\frac{1}{N} \sum_{j=0}^{N-1} T(j)
$$

Since there are two partitions:

$$
T(N)=\frac{2}{N}\left[\sum_{j=0}^{N-1} T(j)\right]+c N
$$

Multiply by N :

$$
\begin{equation*}
N T(N)=2\left[\sum_{j=0}^{N-1} T(j)\right]+c N^{2} \tag{a}
\end{equation*}
$$

Substitute N by $N-1: \quad(N-1) T(N-1)=2\left[\sum_{j=0}^{N-2} T(j)\right]+c(N-1)^{2}$
Subtract (a)-(b): $\quad N T(N)-(N-1) T(N-1)=2 T(N-1)+2 c N-c$

Quicksort: Average Case Analysis, cont'd

$$
N T(N)-(N-1) T(N-1)=2 T(N-1)+2 c N-c
$$

Rearrange and drop the insignificant $-c$:

$$
N T(N)=(N+1) T(N-1)+2 c N
$$

Divide through by $N(N+1)$:

$$
\frac{T(N)}{N+1}=\frac{T(N-1)}{N}+\frac{2 c}{N+1}
$$

Telescope:

$$
\begin{aligned}
& \frac{T(N-1)}{N}=\frac{T(N-2)}{N-1}+\frac{2 c}{N} \\
& \frac{T(N-2)}{N-1}=\frac{T(N-3)}{N-2}+\frac{2 c}{N-1}
\end{aligned}
$$

$$
\frac{T(2)}{3}=\frac{T(1)}{2}+\frac{2 c}{3}
$$

Add and cancel

Quicksort: Average Case Analysis, cont'd

Add and cancel:

$$
\frac{T(N)}{N+1}=\frac{T(1)}{2}+2 c \sum_{i=3}^{N+1} \frac{1}{i}
$$

Recall the harmonic number: $\sum_{i=3}^{N+1} \frac{1}{i} \approx \log _{e} N$
And so:

$$
\frac{T(N)}{N+1}=O(\log N)
$$

Therefore:

$$
T(N)=O(N \log N)
$$

Quicksort: Worst Case Analysis

$$
T(N)= \begin{cases}1 & \text { if } N=0 \text { or } 1 \\ T(i)+T(N-i-1)+c N & \text { if } N>1\end{cases}
$$

- The pivot is always the smallest value of the partition, and so $i=0$.

$$
T(N)=T(N-1)+c N
$$

Telescope:

$$
\begin{aligned}
& T(N-1)=T(N-2)+c(N-1) \\
& T(N-2)=T(N-3)+c(N-2) \\
& \vdots \\
& T(2)=T(1)+c(2)
\end{aligned}
$$

Add and cancel:

$$
T(N)=T(1)+c \sum_{i=2}^{N} i=\theta\left(N^{2}\right)
$$

Quicksort: Worst Case Analysis, cont'd

$$
T(N)= \begin{cases}1 & \text { if } N=0 \text { or } 1 \\ T(i)+T(N-i-1)+c N & \text { if } N>1\end{cases}
$$

- The pivot is always the smallest value of the partition, and so $i=0$.

$$
T(N)=T(1)+c \sum_{i=2}^{N} i=\theta\left(N^{2}\right)
$$

- How does this explain the very bad behavior of quicksort when the data is already sorted?

Quicksort: Worst Case Analysis, cont'd

```
N = 100,000
```

ALGORITHM	MOVES	COMPARES	MILLISECONDS
Insertion sort	0	99,999	0
Shellsort suboptimal	0	$1,500,006$	4
Shellsort Knuth	0	967,146	4
Heap sort	$1,900,851$	$3,882,389$	12
Merge sort array	$3,337,856$	853,904	17
Merge sort linked list	$1,115,021$	815,024	29
Quicksort suboptimal	400,000	$5,000,150,000$	4,857
Quicksort optimal	400,000	$1,968,946$	6

Assignment \#5

- Add heapsort, mergesort, and quicksort to your work for Assignment \#4.
- Do two versions of mergesort:
- Sort an array.
- Sort a linked list.
- Do two versions of quicksort:
- Suboptimal first element as the pivot choice.
- Median-of-three pivot choice.

Assignment \#5, cont'd

- Total sorts:

- Insertion sort
- Shellsort (two versions, optimal and suboptimal h sequences)
- Heapsort
- Mergesort (two versions, array and linked list)

Quicksort (two versions, optimal and suboptimal pivot choices)

Assignment \#5, cont'd

- For each sort, your program should output:
- How much time it took.
- Count comparisons it made between two values.
- Count moves it made of the values.
\square Verify that your arrays are properly sorted!
- You should output these results in a single table for easy comparison.

Assignment \#5, cont'd

- You may choose a partner to work with you on this assignment.
- Both of you will receive the same score.

ㅁ Email your answers to ron.mak@sjsu.edu

- Subject line:

CS 146 Assignment \#5: Your Name(s)

- CC your partner when you email your solution.

ㅁ Due Friday, July 24 at 11:59 PM.

Break

A General Lower Bound for Sorting

- Any sorting algorithm that uses only comparisons requires $\Omega(N \log N)$ comparisons in the worst case.

ㅁ Prove: Any sorting algorithm that uses only comparisons requires $\lceil\log (N!)\rceil$ comparisons in the worst case and $\log (N!)$ comparisons on average.

$$
\log (N!)=\Omega(N \log N)
$$

A General Lower Bound for Sorting, cont'd

- Every sorting algorithm that uses only comparisons
can be represented by a decision tree.
- The number of comparisons is equal to the depth of the deepest leaf.

$\mathrm{a}<\mathrm{b}<\mathrm{c}$
$\mathrm{a}<\mathrm{c}<\mathrm{b}$
$\mathrm{b}<\mathrm{a}<\mathrm{c}$
$\mathrm{b}<\mathrm{c}<\mathrm{a}$
$\mathrm{c}<\mathrm{a}<\mathrm{b}$
$\mathrm{c}<\mathrm{b}<\mathrm{a}$

Figure 7.18 A decision tree for three-element sort

Some Decision Tree Properties

\square A binary tree of depth d has at most 2^{d} leaves.
\square A binary tree with L leaves must have depth at least $\log L$.

- Any sorting algorithm that uses only comparisons between elements requires at least $\mid \log (N!)$ comparisons in the worst case.
- A decision tree to sort N elements must have N ! leaves.

A General Lower Bound for Sorting, cont'd

- Prove: Any sorting algorithm that uses only comparisons between elements requires $\Omega(N \log N)$ comparisons.

A General Lower Bound for Sorting, cont'd

$$
\log (N!)=\log (1 \bullet 2 \bullet 3 \bullet \cdots \bullet N)=\log (1)+\log (2)+\log (3)+\cdots+\log (N)
$$

Delete the first half of the terms:

$$
\geq \log \left(\frac{N}{2}\right)+\log \left(\frac{N}{2}+1\right)+\log \left(\frac{N}{2}+2\right)+\cdots+\log N
$$

Replace each remaining term by the smallest one, $\log (N / 2)$:

$$
\geq \log \left(\frac{N}{2}\right)+\log \left(\frac{N}{2}\right)+\log \left(\frac{N}{2}\right)+\cdots+\log \left(\frac{N}{2}\right)
$$

There are $N / 2$ of these $\log (N / 2)$ terms:

$$
=\frac{N}{2} \log \left(\frac{N}{2}\right)=\frac{N}{2} \log \left(N \bullet 2^{-1}\right)=\frac{N}{2}[(\log N)-1]=\frac{N}{2} \log N-\frac{N}{2}
$$

Therefore:

$$
\log (N!)=\Omega(N \log N)
$$

A General Lower Bound for Sorting, cont'd

$$
\log (N!)=\Omega(N \log N)
$$

- Therefore, you cannot devise a sorting algorithm based on comparing elements that will be faster than $\Omega(N \log N)$ in the worst case.

Bucket Sort and Radix Sort

- Bucket sorting relies on using a number of bins, or buckets, into which the values to be sorted are entered.
- Sorting time is linear rather than $O(N \log N)$.
- Does not rely on comparisons.
- A form of bucket sort is the radix sort.
- Used to sort values each of which has a limited number of characters.
- Example: 3-digit numbers.
- Radix sort was used by the old electromechanical IBM card sorters to sort punched cards.

IBM 083 Card Sorter

- 1950s vacuum-tube and mechanical technology.
- Sorted up to 1000 cards per minute.

Punched Cards

\square A punched card had up to 12 punches per column, numbered 0-9 and 11 and 12.

- The card sorter had 12 bins (plus a reject bin).

Figure 4. Card Codes and Graphics for 64-Character Set

Sorting Punched Cards

- How to sort cards punched with 3-digit numbers

(in the same columns):

- First sort on the units digit.
- Each card drops into the appropriate bin based on the units digit.
$\square \quad$ Carefully remove the cards from the bins, keeping them in order.
- Next sort on the tens digit.
- Each card drops into the appropriate bin based on the 10s digit.
- Carefully remove the cards from the bins, keeping them in order.
- Finally sort on the hundreds digit.
- Each card drops into the appropriate bin based on the 100s digit.

Radix sorting

 with an old electromechanical punched card sorter.

(b) Column 42 (Tens Digit) Sorted

976		723		542		336	200	132	040			
9	8	7	6	5	4	3	2	1	0	11	12	R

(c) Column 41 (Hundreds Digit) Sorted

Fig. 4-6

Magnetic Tape Sorting

- Most magnetic tapes can be read and written in one direction only.
- You can also rewind a tape.

Magnetic Tape Sorting, cont'd

Magnetic Tape Sorting, cont'd

- Suppose you have data you want to sort.
\square The unsorted data records initially all reside on one magnetic tape.
- You have 4 tape drives and 3 blank tapes.
- The computer's memory can hold and sort only 3 data records at a time.
\square Perform an external merge sort.

Magnetic Tape Merge Sort

T1	11	12	35	81	94	96	15
T2	17	28	41	58	75	99	
T3							
T4							

Magnetic Tape Merge Sort, cont'd

T1		15
T2	$\begin{array}{lllllllll}17 & 28 & 41 & 58 & 75 & 99\end{array}$	
T3		
T4		
T1		
T2		
T3	$\begin{array}{llllllll}11 & 12 & 17 & 28 & 35 & 41\end{array}$	$\begin{array}{lllllll}58 & 75 & 81 & 94 & 96 & 99\end{array}$
T4	15	
T1	$\begin{array}{lllllll}11 & 12 & 15 & 17 & 28 & 35\end{array}$	$\begin{array}{lllllllllll}41 & 58 & 75 & 81 & 94 & 96 & 99\end{array}$
T2		
T3		
T4		

