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e
Review of Sorting Algorithms

Insertion sort
Shellsort
Heapsort
Mergesort
Quicksort

O O O O 0O

O What is going on with these sorts?
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e
Analysis of Quicksort

0 \Whatis the running time to quicksort a list of N7

0 Partition the array into two subarrays
(constant ¢/N time).

0 A recursive call on each subarray.

O A recurrence relation:

1 ifN=0or1
) ‘{ TG) + T(N=i—1)+ eN ifN> 1

m where i i1s the number of values in the left partition.
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Analysis of Quicksort

O The performance of quicksort is
highly dependent on ...

® .. the quality of the choice of pivot.

Computer Science Dept. CS 146: Data Structures and Algorithms 4
sanjoséstate  Summer 2015: July 14 © R. Mak

IIIIIIIIIII



Quicksort: Best Case Analysis

1 o= e
L) _{ TG) + T(N—=i-1)+cN if N> 1

O The pivot is always the median. Each subarray is the same size.

T(N)=2T(N/2)+cN | Add and cancel (there are log N equations):
Divide through by N: T(N) T(l) +elog
T(N):T(N/2)+C N
N N/2
Telescope: Therefore:
T(N/2) T(N/4
(N/2) TN/, T(N)=N+cNlogN =0(Nlog N)
N/2 N/4
T(N/4) T(N/8)+c
N/4 o N/8
°
°
@) _T(0)
2 1
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Quicksort: Average Case Analysis

ifN=0or1l
)= {T(Z)JrT(N i-1)+ceN if N> 1

O Each size for a subarray after partitioning is equally likely,
with probability 1/N:

1N1

T(N-i-1)=— ZT(])

Since there are T(N) _ 2 N_IT( )+ e

two partitions: N|%& J
N-1

Multiply by N: NT(N) = 2{ T (J) +cN’ (a)
=0

N-2
Substitute N by N-1: (N -DT(N -1) = 2{ T(j) |+c(N-1)
j=0

Subtract (a) - (b): NT(N)— (N —DT(N —1)=2T(N —1)+2¢N —c
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Quicksort: Average Case Analysis, cont'd

NT(N)-(N-DT(N-1)=2T(N —-1)+2cN —c
Rearrange and drop the insignificant —c:
NT(N)=(N+1)T(N —-1)+2cN
Divide through by N(N+1):
T(N):T(N—1)+ 2c
N +1 N N +1

Telescope:
T(N-1) _T(N-2) 2
N N -1 N
T(N-2) _T(N-3) 2
N -1 N -2 N -1
[
[
[
TQ) _TQ) 2
3 ) 3 Add and cancel
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Quicksort: Average Case Analysis, cont'd

Add and cancel:

I 1), §11

N +1 =y
N+1 1
Recall the harmonic number: Z; ~ loge N
i=3
And so: T(N
L — O(log N)
N +1
Therefore:
T'(N)=0O(NlogN)
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Quicksort: Worst Case Analysis

1 o= e
L) _{ TG) + T(N—=i-1)+cN if N> 1

O The pivot is always the smallest value of the partition, and so i = 0.

T(N)=T(N -1)+cN
Telescope:
T(N—-1)=T(N -2)+c(N 1)
T(N=2)=T(N=3)+c(N-2)
7(2)= T(.l) +c(2)
Add and cancel:

T(N)=T(1)+ cii =0(N°)
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Quicksort: \Worst Case Analysis, cont'd

I if N=0or 1
) _{ TG) + T(N—i-1)+cN if N> 1

O The pivot is always the smallest value of the partition, and so i = 0.

T(N)=T(Q)+ cii =O(N?)

i=2

0O How does this explain the very bad behavior of
quicksort when the data is already sorted?
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Quicksort: Worst Case Analysis, cont'd

N = 100,000

ALGORITHM MOVES COMPARES MILLISECONDS
Insertion sort 0 99,999 0
Shellsort suboptimal 0 1,500,006 4
Shellsort Knuth 0 967,146 4
Heap sort 1,900,851 3,882,389 12
Merge sort array 3,337,856 853,904 17
Merge sort linked list 1,115,021 815,024 29
Quicksort suboptimal 400,000 5,000,150,000 4,857
Quicksort optimal 400,000 1,968,946 6

Computer Science Dept. CS 146: Data Structures and Algorithms 11

sanjosestate  Summer 2015: July 14 © R. Mak

HIVERSITY



e
Assignment #5

0 Add heapsort, mergesort, and quicksort
to your work for Assignment #4.

0 Do two versions of mergesort:
= Sortan array.
= Sort a linked list.

0 Do two versions of quicksort:
= Suboptimal first element as the pivot choice.
= Median-of-three pivot choice.
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e
Assignment #5, cont’'d

O Total sorts:
Insertion sort

Shellsort (two versions, optimal and suboptimal h
sequences)

Heapsort
Mergesort (two versions, array and linked list)

Quicksort (two versions, optimal and suboptimal
pivot choices)
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Assignment #5, cont’'d

0 For each sort, your program should output:

=  How much time it took.
= Count comparisons it made between two values.

m Count moves it made of the values.
0 Verify that your arrays are properly sorted!

0O You should output these results
In a single table for easy comparison.
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Assignment #5, cont’'d

0O You may choose a partner to work with you
on this assignment.

= Both of you will receive the same score.

O Email your answers to ron.mak@sjsu.edu

=  Subject line:
CS 146 Assignment #5: Your Name(s)

=  CC your partner when you email your solution.

O Due Friday, July 24 at 11:59 PM.
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A General Lower Bound for Sorting

UMIVERSITY

Any sorting algorithm that uses
only comparisons requires Q(N log N)
comparisons in the worst case.

Prove: Any sorting algorithm that uses only
comparisons requires |log(N!)| comparisons
In the worst case and log(/N!) comparisons
on average.

log(N!) = Q(N log N)
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A General Lower Bound for Sorting, cont’d

0O Every sorting algorithm
that uses only comparisons

a<h<c H

a<c<h OW_many

bea<e possible 3|
b<c<a combinations
c<a<h for 3 elements?
c<b<a

can be represented by a/ @)\

decision tree.

® The number of
comparisons is
equal to the

deepest

leaf.

depth of the b/@

a<h=c b=<a=<c
a<c<h b<c=a
c=a<h c<h<a
B Fa—
2 3)
a<c (_) c<a Vu c<h
a<h<c beace
a<c=h 5) b<c<a 7
f
c<h a<c C<a
|at:bt:|:| |a==iu:--ib| |b--iar;c:| |br;|:--ia|
(9) 10) (11)
WS o) N
Figure 7.18 A decision tree for three-element sort
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Some Decision Tree Properties

O A binary tree of depth 4 has at most 2¢ leaves.

O A binary tree with L leaves must have depth
at least logﬂ.

0O Any sorting algorithm that uses only
comparisons between elements requires at
least (log(N !)_lcomparisons in the worst case.

A decision tree to sort N elements
must have N! leaves.
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A General Lower Bound for Sorting, cont’d

O Prove: Any sorting algorithm that uses only
comparisons between elements requires
Q(N log N) comparisons.
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A General Lower Bound for Sorting, cont’d

log(N!)=1log(le2e3e...0 N)=1log(l)+1log(2)+1log(3)+---+log(N)

Delete the first half of the terms:

> log(%j + log(% + lj + log(% + 2) +---+logN

Replace each remaining term by the smallest one, log(N/2):

N N N N
>logl — |+1log| — |+1log| — |+---+1og| —
g(zj gtzj gtzj gtzj

There are N/2 of these log(N/2) terms:

N (NY N N N N
= D ogl 2 1= 2= Xlog N)-1]= 2 log N - ~
> Og(zj : og(Nv e27') ~[Gog V) —1]=—log N - =

Therefore:

log(N!)=CQ(N logN)
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A General Lower Bound for Sorting, cont’d

log(N!)=Q(NlogN)

O Therefore, you cannot devise a sorting
algorithm based on comparing elements that
will be faster than Q(N log N) in the worst case.
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I
Bucket Sort and Radix Sort

O Bucket sorting relies on using a number of bins,
or buckets, into which the values to be sorted

are entered.

O Sorting time is linear rather than O(N log N).
Does not rely on comparisons.

O A form of bucket sort is the radix sort.

Used to sort values each of which has
a limited number of characters.
O  Example: 3-digit numbers.

Radix sort was used by the old electromechanical
IBM card sorters to sort punched cards.
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e —
IBM 083 Card Sorter

IBM 83 SORTER

0 1950s vacuum-tube and mechanical technology.
= Sorted up to 1000 cards per minute.
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e —
Punched Cards

0O A punched card had up to 12 punches per column,
numbered 0-9 and 11 and 12.

® The card sorter had 12 bins (plus a reject bin).

Digits Letters Special Chaoracters
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Figure 4. Card Codes and Graphics for 64-Character Set
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e
Sorting Punched Cards

0O How to sort cards punched with 3-digit numbers

(in the same columns):

First sort on the units digit.
0O Each card drops into the appropriate bin based on the units digit.
O Carefully remove the cards from the bins, keeping them in order.

Next sort on the tens digit.
0O Each card drops into the appropriate bin based on the 10s digit.
0 Carefully remove the cards from the bins, keeping them in order.

Finally sort on the hundreds digit.
0O Each card drops into the appropriate bin based on the 100s digit.

combtter scaa@ii@fully removedhe cardsdroms therins, keeping them in order g
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54 PUNCHED-CARD RECORDING AND PROCESSING [CHAP. 4

Cards in
hopper ; Cards in pockets after sort
before sort
040

Radix sorting 2
338 132 @

with an old 76 % e %

132 976 | 135 723 | 542
02

electromechanical s
punched card sorter.

{(b) Column 42 (Tens Digit) Sorted

976
542
040
336
135
132
723
062
200

Computer Science Dept. (¢) Column 41 (Hundreds Digit) Sorted

Summer 2015: July 14
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e
Magnetic Tape Sorting

O Most magnetic tapes can be read and written
In one direction only.

® You can also rewind a tape.
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Magnetic Tape Sorting, cont’d
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e
Magnetic Tape Sorting, cont’d

O Suppose you have data you want to sort.

0O The unsorted data records initially all reside
on one magnetic tape.

O You have 4 tape drives and 3 blank tapes.

O The computer's memory can hold and sort
only 3 data records at a time.

O Perform an external merge sort.
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e
Magnetic Tape Merge Sort

71|81 94 11 96 12 35 17 99 28 58 41 75 15

T2
Can you follow
T3 what’s happening?
T4 (These slides
T are animated.)

T2

T3 ||11 81 94||17 28 99|15
T4 |12 35 96]|41 58 75

T1| 11 12 35 81 94 96 15
T2| 17 28 41 58 75 99

T3
T4
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e
Magnetic Tape Merge Sort, cont’d

T1]11 12 35 81 94 96|15
T2 |17 28 41 58 75 99
T3
T4

T1
T2

T3|11 12 17 28 35 41 58 75 81 94 96 99
T4 |15

T1]11 12 15 17 28 35 41 58 75 81 94 96 99
T2

T3
T4
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