CS 146: Data Structures and Algorithms
July 14 Class Meeting

Department of Computer Science
San Jose State University

Summer 2015
Instructor: Ron Mak
San José State

Y\ www.cs.sjsu.edu/~mak UNTVERSITY

http://www.cs.sjsu.edu/~mak

e
Review of Sorting Algorithms

Insertion sort
Shellsort
Heapsort
Mergesort
Quicksort

O O O O 0O

O What is going on with these sorts?

Computer Science Dept. CS 146: Data Structures and Algorithms D
San José State Summer 2015: JU|y 14 © R. Mak emo

IIIIIIIIIII

e
Analysis of Quicksort

0 \Whatis the running time to quicksort a list of N7

0 Partition the array into two subarrays
(constant ¢/N time).

0 A recursive call on each subarray.

O A recurrence relation:

1 ifN=0or1
) ‘{ TG) + T(N=i—1)+ eN ifN> 1

m where i i1s the number of values in the left partition.

Computer Science Dept. CS 146: Data Structures and Algorithms 3
sanjoséstate Summer 2015: July 14 © R. Mak

IIIIIIIIIII

Analysis of Quicksort

O The performance of quicksort is
highly dependent on ...

® .. the quality of the choice of pivot.

Computer Science Dept. CS 146: Data Structures and Algorithms 4
sanjoséstate Summer 2015: July 14 © R. Mak

IIIIIIIIIII

Quicksort: Best Case Analysis

1 o= e
L) _{ TG) + T(N—=i-1)+cN if N> 1

O The pivot is always the median. Each subarray is the same size.

T(N)=2T(N/2)+cN | Add and cancel (there are log N equations):
Divide through by N: T(N) T(l) +elog
T(N):T(N/2)+C N
N N/2
Telescope: Therefore:
T(N/2) T(N/4
(N/2) TN/, T(N)=N+cNlogN =0(Nlog N)
N/2 N/4
T(N/4) T(N/8)+c
N/4 o N/8
°
°
@) _T(0)
2 1
Computer Science Dept. CS 146: Data Structures and Algorithms 5

sanjoséstate Summer 2015: July 14 © R. Mak

IIIIIIIIIII

Quicksort: Average Case Analysis

ifN=0or1l
)= {T(Z)JrT(N i-1)+ceN if N> 1

O Each size for a subarray after partitioning is equally likely,
with probability 1/N:

1N1

T(N-i-1)=— ZT(])

Since there are T(N) _ 2 N_IT()+ e

two partitions: N|%& J
N-1

Multiply by N: NT(N) = 2{ T (J) +cN’ (a)
=0

N-2
Substitute N by N-1: (N -DT(N -1) = 2{ T(j) |+c(N-1)
j=0

Subtract (a) - (b): NT(N)— (N —DT(N —1)=2T(N —1)+2¢N —c

Computer Science Dept. CS 146: Data Structures and Algorithms 6
sanjoséstate Summer 2015: July 14 © R. Mak

HHHHHHHHHHH

Quicksort: Average Case Analysis, cont'd

NT(N)-(N-DT(N-1)=2T(N —-1)+2cN —c
Rearrange and drop the insignificant —c:
NT(N)=(N+1)T(N —-1)+2cN
Divide through by N(N+1):
T(N):T(N—1)+ 2c
N +1 N N +1

Telescope:
T(N-1) _T(N-2) 2
N N -1 N
T(N-2) _T(N-3) 2
N -1 N -2 N -1
[
[
[
TQ) _TQ) 2
3) 3 Add and cancel
Computer Science Dept. CS 146: Data Structures and Algorithms 7

sanjoséstate Summer 2015: July 14 © R. Mak

HHHHHHHHHHH

Quicksort: Average Case Analysis, cont'd

Add and cancel:

I 1), §11

N +1 =y
N+1 1
Recall the harmonic number: Z; ~ loge N
i=3
And so: T(N
L — O(log N)
N +1
Therefore:
T'(N)=0O(NlogN)
Computer Science Dept. CS 146: Data Structures and Algorithms 8

sanjoséstate Summer 2015: July 14 © R. Mak

HHHHHHHHHHH

Quicksort: Worst Case Analysis

1 o= e
L) _{ TG) + T(N—=i-1)+cN if N> 1

O The pivot is always the smallest value of the partition, and so i = 0.

T(N)=T(N -1)+cN
Telescope:
T(N—-1)=T(N -2)+c(N 1)
T(N=2)=T(N=3)+c(N-2)
7(2)= T(.l) +c(2)
Add and cancel:

T(N)=T(1)+ cii =0(N°)

Computer Science Dept. CS 146: Data Structures and Algorithms 9
sanjoséstate Summer 2015: July 14 © R. Mak

HHHHHHHHHHH

Quicksort: \Worst Case Analysis, cont'd

I if N=0or 1
) _{ TG) + T(N—i-1)+cN if N> 1

O The pivot is always the smallest value of the partition, and so i = 0.

T(N)=T(Q)+ cii =O(N?)

i=2

0O How does this explain the very bad behavior of
quicksort when the data is already sorted?

Computer Science Dept. CS 146: Data Structures and Algorithms 10
sanjoséstate Summer 2015: July 14 © R. Mak

IIIIIIIIIII

——

Quicksort: Worst Case Analysis, cont'd

N = 100,000

ALGORITHM MOVES COMPARES MILLISECONDS
Insertion sort 0 99,999 0
Shellsort suboptimal 0 1,500,006 4
Shellsort Knuth 0 967,146 4
Heap sort 1,900,851 3,882,389 12
Merge sort array 3,337,856 853,904 17
Merge sort linked list 1,115,021 815,024 29
Quicksort suboptimal 400,000 5,000,150,000 4,857
Quicksort optimal 400,000 1,968,946 6

Computer Science Dept. CS 146: Data Structures and Algorithms 11

sanjosestate Summer 2015: July 14 © R. Mak

HIVERSITY

e
Assignment #5

0 Add heapsort, mergesort, and quicksort
to your work for Assignment #4.

0 Do two versions of mergesort:
= Sortan array.
= Sort a linked list.

0 Do two versions of quicksort:
= Suboptimal first element as the pivot choice.
= Median-of-three pivot choice.

Computer Science Dept. CS 146: Data Structures and Algorithms 12
sanjoséstate Summer 2015: July 14 © R. Mak

IIIIIIIIIII

e
Assignment #5, cont’'d

O Total sorts:
Insertion sort

Shellsort (two versions, optimal and suboptimal h
sequences)

Heapsort
Mergesort (two versions, array and linked list)

Quicksort (two versions, optimal and suboptimal
pivot choices)

Computer Science Dept. CS 146: Data Structures and Algorithms 13
sanjosestate Summer 2015: July 14 © R. Mak

UMIVERSITY

Assignment #5, cont’'d

0 For each sort, your program should output:

= How much time it took.
= Count comparisons it made between two values.

m Count moves it made of the values.
0 Verify that your arrays are properly sorted!

0O You should output these results
In a single table for easy comparison.

Computer Science Dept. CS 146: Data Structures and Algorithms 14
sanjoséstate Summer 2015: July 14 © R. Mak

UMIVERSITY

Assignment #5, cont’'d

0O You may choose a partner to work with you
on this assignment.

= Both of you will receive the same score.

O Email your answers to ron.mak@sjsu.edu

= Subject line:
CS 146 Assignment #5: Your Name(s)

= CC your partner when you email your solution.

O Due Friday, July 24 at 11:59 PM.

Computer Science Dept. CS 146: Data Structures and Algorithms 15
sanjoséstate Summer 2015: July 14 © R. Mak

IIIIIIIIIII

mailto:ron.mak@sjsu.edu

Break

San José State
UMIVERSITY

Computer Science Dept.
Summer 2015: July 14

CS 146: Data Structures and Algorithms
© R. Mak

16

A General Lower Bound for Sorting

UMIVERSITY

Any sorting algorithm that uses
only comparisons requires Q(N log N)
comparisons in the worst case.

Prove: Any sorting algorithm that uses only
comparisons requires |log(N!)| comparisons
In the worst case and log(/N!) comparisons
on average.

log(N!) = Q(N log N)

Computer Science Dept. CS 146: Data Structures and Algorithms 17

tate Summer 2015: July 14 © R. Mak

A General Lower Bound for Sorting, cont’d

0O Every sorting algorithm
that uses only comparisons

a<h<c H

a<c<h OW_many

bea<e possible 3|
b<c<a combinations
c<a<h for 3 elements?
c<b<a

can be represented by a/ @)\

decision tree.

® The number of
comparisons is
equal to the

deepest

leaf.

depth of the b/@

a<h=c b=<a=<c
a<c<h b<c=a
c=a<h c<h<a
B Fa—
2 3)
a<c (_) c<a Vu c<h
a<h<c beace
a<c=h 5) b<c<a 7
f
c<h a<c C<a
|at:bt:|:| |a==iu:--ib| |b--iar;c:| |br;|:--ia|
(9) 10) (11)
WS o) N
Figure 7.18 A decision tree for three-element sort
CS 146: Data Structures and Algorithms 18

Computer Science Dept.
e Summer 2015: July 14

IIIIIIIIIII

© R. Mak

——

Some Decision Tree Properties

O A binary tree of depth 4 has at most 2¢ leaves.

O A binary tree with L leaves must have depth
at least logﬂ.

0O Any sorting algorithm that uses only
comparisons between elements requires at
least (log(N !)_lcomparisons in the worst case.

A decision tree to sort N elements
must have N! leaves.

Computer Science Dept. CS 146: Data Structures and Algorithms 19
sanjosestate Summer 2015: July 14 © R. Mak

.............

A General Lower Bound for Sorting, cont’d

O Prove: Any sorting algorithm that uses only
comparisons between elements requires
Q(N log N) comparisons.

Computer Science Dept. CS 146: Data Structures and Algorithms 20
sanjoséstate Summer 2015: July 14 © R. Mak

IIIIIIIIIII

A General Lower Bound for Sorting, cont’d

log(N!)=1log(le2e3e...0 N)=1log(l)+1log(2)+1log(3)+---+log(N)

Delete the first half of the terms:

> log(%j + log(% + lj + log(% + 2) +---+logN

Replace each remaining term by the smallest one, log(N/2):

N N N N
>logl — |+1log| — |+1log| — |+---+1og| —
g(zj gtzj gtzj gtzj

There are N/2 of these log(N/2) terms:

N (NY N N N N
= D ogl 2 1= 2= Xlog N)-1]= 2 log N - ~
> Og(zj : og(Nv e27') ~[Gog V) —1]=—log N - =

Therefore:

log(N!)=CQ(N logN)

Computer Science Dept. CS 146: Data Structures and Algorithms 21
sanjoséstate Summer 2015: July 14 © R. Mak

IIIIIIIIIII

A General Lower Bound for Sorting, cont’d

log(N!)=Q(NlogN)

O Therefore, you cannot devise a sorting
algorithm based on comparing elements that
will be faster than Q(N log N) in the worst case.

Computer Science Dept. CS 146: Data Structures and Algorithms 22
sanjoséstate Summer 2015: July 14 © R. Mak

IIIIIIIIIII

I
Bucket Sort and Radix Sort

O Bucket sorting relies on using a number of bins,
or buckets, into which the values to be sorted

are entered.

O Sorting time is linear rather than O(N log N).
Does not rely on comparisons.

O A form of bucket sort is the radix sort.

Used to sort values each of which has
a limited number of characters.
O Example: 3-digit numbers.

Radix sort was used by the old electromechanical
IBM card sorters to sort punched cards.

Computer Science Dept. CS 146: Data Structures and Algorithms 23
sanjosestate Summer 2015: July 14 © R. Mak

UMIVERSITY

e —
IBM 083 Card Sorter

IBM 83 SORTER

0 1950s vacuum-tube and mechanical technology.
= Sorted up to 1000 cards per minute.

Computer Science Dept. CS 146: Data Structures and Algorithms 24
sanjoséstate Summer 2015: July 14 © R. Mak
UMIVERSITY

e —
Punched Cards

0O A punched card had up to 12 punches per column,
numbered 0-9 and 11 and 12.

® The card sorter had 12 bins (plus a reject bin).

Digits Letters Special Chaoracters
U123450757 rECLEr GHIJe LN TUVMAY S L O =12 o gl 2 0 =" "\1
mnnn i
mmm mnmm

FTHNRACEOMNBENESNAEANAHTAANRAEN BN FER@HTOMEET NI DTUMEETEEDNEDHBENTUANTIFINANTT AN N

| EERR RN E R RN ERR ARl R R R R RN R R R R R R R R R R ERERER AR NI ERRRRRRERERRRREEE
22222:02222222222220 222222200 22222220 2222222202 02022222202222220222220222222121222
EEE R EE R R FEERE R R EERREEE FEEEEEERFREE] EEEREER] FEREEE] ERERE] FRREEEEEE
] E R T F R EE R R N R RN EE TR ERN RN ENRIRY IRNYRYEY!
555555555 55555555555505555555505555555055555555555505555550555555055555) 5555555
A A i G A Hada i i gt
IRRR R ERR] SRR RSRRR] RRRSRRER] RRRREERI AERRAREERRAE] FRRRRR] RAREAR] KERRAL RRRAS
saoansnnannelenonnnnnnneaBannnonnoleoneanelon s DUNNNNeNNNANRsNRRRNNRNRRNNERRNE
3313:5::::::slaissssisssssl!ai:::ail::::s:sls:sqssssas155511915155;::ss::ss:slssd)

SETHAMABONENDORARNANNNENT AN ENHENDEHGNCAHEADN QAN UDNUENTHENHEODHMENDUANIIANART AR N

\ L

scooBonoooooconooooooogepoocoooooooooMENNNNNNecooonsooocooooaoo BNNNNNNecooo0a0000
i1148
1

Figure 4. Card Codes and Graphics for 64-Character Set

Computer Science Dept. CS 146: Data Structures and Algorithms 25
sanjoséstate Summer 2015: July 14 © R. Mak

UMIVERSITY

e
Sorting Punched Cards

0O How to sort cards punched with 3-digit numbers

(in the same columns):

First sort on the units digit.
0O Each card drops into the appropriate bin based on the units digit.
O Carefully remove the cards from the bins, keeping them in order.

Next sort on the tens digit.
0O Each card drops into the appropriate bin based on the 10s digit.
0 Carefully remove the cards from the bins, keeping them in order.

Finally sort on the hundreds digit.
0O Each card drops into the appropriate bin based on the 100s digit.

combtter scaa@ii@fully removedhe cardsdroms therins, keeping them in order g
sanjosestate Summer 2015: July 14 © R. Mak

UMIVERSITY

54 PUNCHED-CARD RECORDING AND PROCESSING [CHAP. 4

Cards in
hopper ; Cards in pockets after sort
before sort
040

Radix sorting 2
338 132 @

with an old 76 % e %

132 976 | 135 723 | 542
02

electromechanical s
punched card sorter.

{(b) Column 42 (Tens Digit) Sorted

976
542
040
336
135
132
723
062
200

Computer Science Dept. (¢) Column 41 (Hundreds Digit) Sorted

Summer 2015: July 14
ﬁﬂnnﬁn?:éns;lﬁfﬁ y Fi_g, 4-6

e
Magnetic Tape Sorting

O Most magnetic tapes can be read and written
In one direction only.

® You can also rewind a tape.

Computer Science Dept. CS 146: Data Structures and Algorithms 28
sanjoséstate Summer 2015: July 14 © R. Mak

HHHHHHHHHHH

Magnetic Tape Sorting, cont’d

Computer Science Dept. CS 146: Data Structures and Algorithms
tate Summer 2015: July 14 © R. Mak

UMIVERSITY

29

e
Magnetic Tape Sorting, cont’d

O Suppose you have data you want to sort.

0O The unsorted data records initially all reside
on one magnetic tape.

O You have 4 tape drives and 3 blank tapes.

O The computer's memory can hold and sort
only 3 data records at a time.

O Perform an external merge sort.

Computer Science Dept. CS 146: Data Structures and Algorithms 30
sanjosestate Summer 2015: July 14 © R. Mak

UMIVERSITY

e
Magnetic Tape Merge Sort

71|81 94 11 96 12 35 17 99 28 58 41 75 15

T2
Can you follow
T3 what’s happening?
T4 (These slides
T are animated.)

T2

T3 ||11 81 94||17 28 99|15
T4 |12 35 96]|41 58 75

T1| 11 12 35 81 94 96 15
T2| 17 28 41 58 75 99

T3
T4

Computer Science Dept. CS 146: Data Structures and Algorithms 31
sanjoséstate Summer 2015: July 14 © R. Mak

IIIIIIIIIII

e
Magnetic Tape Merge Sort, cont’d

T1]11 12 35 81 94 96|15
T2 |17 28 41 58 75 99
T3
T4

T1
T2

T3|11 12 17 28 35 41 58 75 81 94 96 99
T4 |15

T1]11 12 15 17 28 35 41 58 75 81 94 96 99
T2

T3
T4

Computer Science Dept. CS 146: Data Structures and Algorithms 32
San José State Summer 2015: July 14 © R. Mak

IIIIIIIII

	CS 146: Data Structures and Algorithms July 14 Class Meeting
	Review of Sorting Algorithms
	Analysis of Quicksort
	Slide 4
	Quicksort: Best Case Analysis
	Quicksort: Average Case Analysis
	Quicksort: Average Case Analysis, cont’d
	Slide 8
	Quicksort: Worst Case Analysis
	Quicksort: Worst Case Analysis, cont’d
	Slide 11
	Assignment #5
	Assignment #5, cont’d
	Slide 14
	Slide 15
	Break
	A General Lower Bound for Sorting
	A General Lower Bound for Sorting, cont’d
	Some Decision Tree Properties
	Slide 20
	Slide 21
	Slide 22
	Bucket Sort and Radix Sort
	IBM 083 Card Sorter
	Punched Cards
	Sorting Punched Cards
	
	Magnetic Tape Sorting
	Magnetic Tape Sorting, cont’d
	Slide 30
	Magnetic Tape Merge Sort
	Magnetic Tape Merge Sort, cont’d

