
Systems Reference Library

File No. 1401 -25
Form C24-1455-2

Fortran Specifications and Operating Procedures
IBM 1401
PROGRAM NUMBER 1401-Fo-050, VERSION 3

This reference publication contains the language spec
ifications necessary to code a 1401 Fortran source pro
gram and the procedures for assembling and running
the object program. In addition to describing the 1401
Fortran language, the specifications section also con
tains descriptions of:

1. the control card

2. the phases of the compiler

3. the arithmetic and input! output routines generated
by the compiler

4. the 1401 Fortran facility for linking programs or
segments for continuous processing and

5. the input/output routine option provided in 1401
Fortran.

In addition to the procedures for assembling and
- running the object program, the operating procedures

section also includes explanations of:

1. compiler output

2. compiler diagnostics

3. object-program storage allocation and

4. object-program halts.

The reader should be familiar with the Fortran
General Information Alanual, Form F2B-B074, and the
IBM 1401 configurations required for the assembly and
the execution of the object program. Additional pub
lications concerning the ffiM 1401 system can be found
in the IBM 1401-1460 Bibliography, Form A24-1495.

This is a reprint of an earlier edition, and incorporates the following
Technical Newsletter:

Form No.

N21-0046-0 15, 20, 22, 28, 29,
33, 40, and 42

4/27/65

Copies of this and other IBM publications can be obtained through IBM Branch Offices.
A form is included at the back of this manual for readers' comments. If this form has
been removed, address comments to: IBM Corporation, Product Publications, Dept. 245,
Rochester, Minn. 55901.

© International Business Machines Corporation 1964

Contents

Fortran Specifications - IBM _1401 5

Machine Requirements 5
Source Program Characters .. 6
\Vriting the Source Program .. 6
Punching a Source Program 7

Constants, Variables, Subscripts, Functions,
and Expressions .. 7

Arithmetic Precision .. 7
Constants .. 7
Variables 8
Subscripts 8
Functions .. 9
Arithmetic Expressions 10

1401 Fortran Statements .. 11

Arithmetic Statement .. 11
Control Statements .. 12
Input/Output Statements .. 14
Specification Statements 21

Input/Output Option 22

Program Linkage .. 22

Linkage Statement 23
Title Cards .. 24
The Monitor Program 25

The Proce·ssor Program ... 26

Control Card .. 26
Logical Flow of the Processor .. 26
Arithmetic Operations 30
Input/Output Operations ... ,............ 35

Performance Data 36

Fortran Operating Procedures - IBM 1401 38

Compiling Operation Procedures 38
Object Program Operation Procedures 42
Running Programs Containing Linkage Routine 43
Sample Programs 43

Index .. 61

The IBM 1401 Fortran is a symbolic programming sys
tem composed of (1) a language and (2) a processor
program (compiler). Symbolic or source statements are
coded using the 1401 Fortran language, which closely
resembles the language of mathematics. The source
program is a particular sequence of source statements.
After being coded on the Fortran Coding Form, Form
X28-7327 (Figure 1), the source statements are punched
into cards, which are then used as input to the 1401
Fortran compiler. The compiler translates the source
program to a 1401 machine-language program (object
program) that can be executed immediately or punched
into cards for future use.

Fortran Specifications' - IBM 1401

Machine Requirements
The minimum machine requirements for the compila
tion of a 1401 Fortran source program are as follows:

8,000 positions of core storage

Advanced Programming Feature

High-Law-Equal Compare Feature

Multiply-Divide Feature

One IBM 1402 Card Read-Punch

One IBM 1403 Printer, Modell or 2

One magnetic tape unit, the IBM 729 or the IBM 7330,
may be used to store and load the 1401 Fortran cam-

Form X28· 7327
Printed in U.S.A. IBWl FORTRAN CODING FORM

Program
Coded By __________ _ Date _____ _

Checked By Identification Page __ of __ _

80

~TEMENT ~
FORTRAN STATEMENT NUMBER .3

C FOR COMMENT
73

I 5 6 7 10 15 20 25 30 35 40 45 50 55 60 65 70 72

I I ..1 1 I I I I

I I

I I

..1

I

I

I I

I I I I

I I

I

I I

I I I I I I

I I I I I 1 I I I

Figure 1. Fortran Coding Form

5

piler. The Sense Switches feature may be used to pro
vide a 1403 listing of the object program during vari
ous stages of compilation.

The minimum machine requirements for exec:ution
of the compiled object program are as follows:

8,000 positions of core storage

Advanced Programming Feature

High-Low-Equal Compare Feature

Multiply-Divide Feature

One IBM 1402 Card Read-Punch

One IBM 1403 Printer, Modell or 2

Source Program Characters

The following chart indicates the list of characters
1

which may be used in a Fortran source program:

Card Card
Character Code Character Code

Blank M 11-4
12-3-8 N 11-5
12-4-8 0 11-6

+ 12 P 11-7
$ 11-3-8 Q 11-8

* 11-4-8 R 11-9
11 S 0-2

/ 0-1 T 0-3
0-3-8 U 0-4
0-4-8 V 0-5
3-8 W 0-6

A 12-1 X 0-7
B 12-2 Y 0-8
C 12-3 Z 0-9
D 12-4 0 0
E 12-5 1 1
F 12-6 2 2
G 12-7 3 3
H 12-8 4 4
I 12-9 5 5
J 11-1 6 6
K 11-2 7 7
L 11-3 8 8

9 9

No other card codes are acceptable in 1401 Fortran
source program statement cards, with the following
exceptions:

4-8 will be taken to mean - (minus).

11-3-8, which normally has meaning $ only when it
appears as H-conversion text in a FORMAT

statement, will be taken to mean * when it ap
pears elsewhere. In this event a message will
be printed in the source program listing in
the same line as the statement.

6 Fortran: 1401 Specs. and Op. Froc.

0-2-8 (prints as record mark) will be tolerated, but
no characters following it in the statement
will be processed even if it is merely a member
of an H-conversion format specification.

Writing the Source Progam

Each Fortran statement begins a new line of the cod
ing form. (Two statements may not appear on the
same line.) Statements that are too long to fit on one
line, however, may be continued on subsequent lines.

Statements and information are arranged on the
coding sheet as follows (comments and continuation
lines are handled separately):

1. Columns 1-5 of the :6.rst line of a statement may
contain a statement number, which can be refer
enced by another Fortran statement. Statement
numbers are unsigned and may range from 1 to
99999. Leading and trailing blanks and leading
zeros in statement numbers are ignored by the
1401 Fortran processor. If no statement number is
needed, columns 1-5 may be left blank.

2. Column 6 of the :6.rst line of a statement may be
either blank or punched with a zero as the user
wishes. See Continuation Lines.

3. Columns 7-72 contain the Fortran statements. A
statement cannot consist of more than 660 charac
ters (i. e., 10 lines - see Continuation Lines). The
Fortran processor ignores blank characters except
in the case of H-conversion (see H-Conversion).
Blanks can be used freely to improve the readabil
ity of the source program.

4. Columns 73-80 are not processed. They can be used
to punch card numbers or other identifying infor
mation.

Continuation Lines

When a Fortran statement is too long to fit on one line
of the coding sheet, it may be continued on the next
line or lines. A statement may take up to nine con
tinuation lines, or a total of ten lines (660 characters).

A continuation line is coded as follows:

1. Columns 1-5 are blank.

2. Column 6 contains any character other than zero or
blank.

3. Columns 7 -72 contain the continuation of the
Fortran statement. Column 7 can be considered as
following column 72 of the preceding line.

4. Columns 73-78 are used for identification. The
processor does not process these columns.

Ie FOR
'-COMMENT

STATEMENT
NUMBER

FORTRAN STATEMENT IDENTIFICATION

010 0 0 0 0 0 0 0 () Il 0 0 0 0 00 nOD 00 0 0 0 0 0 0 0 0 0 0 0 0
112 3 4 5 7 8 9 10 11 12 13 14 15 IS 17 18 19 20 21 22 23 24 25 26 27 2. 29 30 31 32 33 34 35 36 37 38 39 40 41 4243 44 45 46 47 48 49 50 51 5253 54 55 56 57 58 59 60 61 62 13 ~ 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

111
I

212

313 33 3 3 3 3 3 3 3 3 3

4!444
i

sl5

616 6 6 6 6 6 6 6 6 6 6 6 S 6 6 6 6 6 6 66 6 6 6 6 6 6 6 G 6 6 6 6 6 6 6 6 6 6 6 6 6 11 6 6 6 6 6 6 6 6 6 6 6 6 6 6 S 6
I

71777777 777 7 7 7 7 7 7 7771 77 77777777 7 7 7 7 7 7 77 7 77777777777 7 777 7 7 7 7 7 77 777 7 7 777777 77777 7 7 7

8
1
8

~999991999~99
1 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 10 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 31 39 ... 41 4Z 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 6Q 67 68 69 70 71 72 3 74 75 76 77 78 79 80

1 •• 888151

Figure 2. Fortran Statement Card

Comments Line

If the user wishes to have comments or notes appear
ing in the source program listing, he may use a line
(or lines) of the coding sheet strictly for comments.
A comments line is coded as follows:

1. Column 1 contains a C. This identifies the com
ments line to the processor.

2. Columns 7-72 may be used to contain the comments
or notes.

3. Columns 73-80 may be used for identification. The
processor does not process these columns.

Punching a Source Program

Each line of the coding sheet is punched, column for
column, into a separate Fortran statement card. The
Fortran statement card is shown in Figure 2. These
punched cards form the Fortran source program deck.

Constants, Variables, Subscripts,

Functions, and Expressions
Constants, variables, and functions separated and re
lated by arithmetic operation signs form an arith
metic expression. (Variables can be subscripted to
express one- or two-dimensional variable arrays.) The
degree of precision of the value of an arithmetic ex
pression is called arithmetic precision.

Arithmetic Precision

The degree of precision of an arithmetic expression
(the number of digits retained) can be set by control
card. The degree of precision for fixed-point and
floating-point arithmetic calculations is set separately.
Fixed-point precision (designated by the letter k) can
be set to any value from 1 through 20. If any result
from a fixed-paint calculation exceeds k digits, the
leftmost (high-order) extra digits are dropped.

Floating-point precision (designated by the letter f)
can be set to any value from 2 through 20. All floating
point calculations are performed to a precision of
f + 2 digits, and ultimately rounded to f digits.

Where no specification of precision is made:

1. fixed-point precision is 5 decimal digits.

2. floating-point precision is 8 decimal digits.

ConstC!nts

Two types of constants are permitted in a 1401 Fortran
source program: fixed-point and floating-point.

Fixed-Point Constants

General Form: A fixed-paint constant consists of from
1 to k decimal digits written without a decimal point
(as integers).

7

Examples:

1
2

+ 524267
- 28987

Floating-Point Constants

General Form: A floating-point constant consists of
any number of digits with a decimal point. E fol
lowed by an integer (signed or unsigned) designates
multiplication by a power of 10. Floating-point con
stants can contain any number of digits but only a
maximum of f significant digits are retained. Float
ing-point constants of n significant digits, where n
< f, will have n digits of precision. The magnitude
of a floating-point constant may lie between the
limits 10 -100 and (1 - 10 -f) X 1099 or be exactly
zero.

Examples:

17.
5.0

.0003
5.0E3 i.e., 5.0 X 103
5.0E + 3 i.e., 5.0 X 10 +3
5.0E - 3 i.e., 5.0 X 10-3

Within storage, a floating-point constant of n signi
ficant digits consists of s + 2 digits, where s is the
smaller of n or f. For example, if f is defined as 18, a
number in the source program having 18 or more
significant digits results in a 20-digit real number, 18
for the mantissa and 2 for the characteristic. If the
constant contains 13 significant digits (f = 18» the in
ternal representation will have the 15 digits: 13 for the
mantissa and 2 for the characteristic.

,Variables

Variable quantities are represented in 1401 Fortran
statements by symbolic names. Variable names con
sist of from one to six alphameric characters (no
special characters), of which the first character must
be alphabetic. The first character of a variable name
denotes which of the two types of variables a parti
cular variable is: (1) fixed-point or (2) floating-point.

Fixed-Point Variables

General Form: All variables whose symbolic name
begins with the letter I, J, K, L, M, or N are fixed
point variables.

Examples:

I
M2RB3
JOBNO

8 Fortran: 1401 Specs. and Gp. Froc.

A fixed-paint variable can assume any integral value
(1, 2, 3, etc.) less than 10k (where k is the integer pre
cision).

When the value assumed by a fixed-point variable
has fewer than k digits, high-order zeros are added.
When the value exceeds k digits, only the k rightmost
digits are retained.

Floating-Point Variables

General Form: A variable whose symbolic name be
gins with an alphabetic letter other than I, J, K, L, M,
or N is a floating-point variable.

Examples:

A

B7
DELTAl

A floating-point variable can assume any value ex
pressible as a normalized floating-point number. That
is, it can be between the limits 10~IOO and (1- 10-f) X
10DD , or be exactly zero. A precision of f digits is car
ried in the mantissa.

Cautions in Naming Variables

To avoid the possibility that a variable name may be
considered by the compiler to be a function name,
two rules should be observed with respect to naming
fixed- or floating-point variables:

1. A variable should not be given a name that is
identical to the name of a function without its ter
minal F. Thus, if a function is named TIMEF, no
variable should be named TIME (see Functions).

2. Subscripted variables should not be given names
ending with F.

Subscripts

A variable can be made to represent any element of a
one- or two-dimensional array of quantities by ap
pending one, or two subscripts, respectively, to the
variable name. The variable is then a subscripted
variable (see Subscripted Variables). The subscripts
are expressions of a special form whose value deter
mines the member of the array to which reference is
made.

Form of Subscripts

General Form: A subscript may take only one of the
following forms, where v represents any unsigned,

nonsubscripted fixed-point variable, and c and c'
represent any unsigned fixed-point constant:

v
c
v+c
v-c
c*v
c * v + c' or c * v - c'

(The * denotes multiplication.)

Examples:

IMAS

J9
K2

N+3
8 * IQUAN
5 * L + 7
4 * M-3
7 + 2 * K (invalid)
9 + J (invalid)

Subscripted Variables

Genel'al Form: A subscripted variable consists of a
variable name (fixed- or floating-point) followed by
parentheses enclosing one or two subscripts, sepa
rated by commas.

Examples:

A (I)
K (3)

BETA (8 * J + 2, K - 2)
MAX (I, J)

1. Any subscripted variable must have the size of its
array (Le., the maximum values its subscripts can
attain) specified in a DIMENSION statement pre
ceding the first appearance of the variable in the
source program. See DIMENSION.

2. The variable in a subscript must be greater than
zero, but not greater than the corresponding array
dimension.

Arrangements of Arrays in Storage

One-dimensional variable arrays are stored sequen
tially. Example: The array A(I), where 1 takes the
integer values from 1 to 10, is stored in the sequence,
A(I), A(2), A(3), ... , A(10).

A two-dimensional variable subscript can be thought
of as designating rows and columns of variables, for
example, the two-dimensional array designation A(I, J)
can be thought of as A (I row, J column). Two-dimen
sional arrays are stored sequentially by columns. Ex
ample: If A (I, J) represents a 3x2 array (1=1, 2, 3 and
J=I, 2), the array is stored in the sequence A(I, 1),
A(2, 1), A(3, 1), A(l, 2), A(2, 2), A(3, 2).

Functions

A function consists of a function name and a function
routine. One argument is appended (in parentheses)
to each function name. The argument can be any valid
1401 Fortran expression, either a fixed- or fioating
point expression (as the function routine requires). The
function name links the argument to the function
routine.

Function routines are closed routines, which appear
in the object program only when called, and then
only once, regardless of the number of references.

The function name can be comprised of from 4 to
7 alphameric characters (not special characters). The
first character must be alphabetic, and the last char
acter must be the letter F. The first character must be
X if and only if the value of the function is to be fixed
point.

Examples:

SINF(A)
LOGF(C)
XFIXF(B)
FLOATF(I)

1401 Fortran Functions

1401 Fortran includes ten function subroutines:

Function

SINF
COSF
ATANF
LOGF
EXPF
SQRTF
ABSF
XABSF
FLOATF
XFIXF

Result

trigonometric sine of argument
trigonometric cosine of argument
trigonometric arctangent of argument
natural logarithm of argument
argument power of e
positive square root of argument
absolute value of floating-point argument
absolute value of fixed-point argument
convert fixed-point argument to floating point
convert floating-point argument to fixed point

The first seven functions listed require that both the
argument and the computed value of the function be.
in floating-point form. For XABSF, both argument and
function are fixed-point. For FLOATF and XFIXF,
argument and function are of opposite form as speci
fied.

User Functions

1401 Fortran allows the addition of up to twelve user
functions. (Each function consists of a function name
and a corresponding function routine.)

Function Name

The user may choose any name he wishes as long as
it conforms to the specifications previously discussed
under the general form of a function.

The function name is added to the 1401 Fortran
table of functions. See Adding the Function Name.

9

Argument

The argument of the function may be any valid fixed
or floating-point expression. No single function may
take both fixed- and floating-point arguments.

If a given operation is to give:

1. fixed- and floating-point functions, using

2. both fixed- and floating-point arguments, four sepa
rate functions must be set up, one for each func
tion-argument combination.

Note: If more than one function routine for a given operation is
to appear in the same program (or program segment), the name
of the routines may be similar, but not the same. For example,
the following four function names might be used when all four
function-argument combinations are required for a cube-root
operation:

1. CUBRTF (fixed-point argument)
2. CUBRTOF (floating-point argument)
3. XCBRTF (fixed-point argument)
4. XCBRTOF (floating-point argument)

Function Routine

The function routine is to be coded in 1401 Autocoder.
Each function routine is assembled separately, and
the assembled routine is then placed in the 1401 For
tran compiler. See Incorporating the User's Function
into 1401 Fortran.

The user must consider the following restrictions
when coding his function routines:

1. The routine's origin must be at position 2000.

2. The routine's length must be less than 2000 posi
tions.

3. Any actual address is not relocated.

4. Any symbolic address that is assembled below posi
tion 2000 is not relocated.

S. No DA, XFR, or EX statements may be used.

6. No address constant whose operand is relocatable
may be used.

In coding a function routine, the user must study
the construction of arithmetic strings and the 1401
Fortran arithmetic routine. The Fortran function sub
routines can be used as examples of how the func
tions must be coded to fit into the compiled program.

In the simplest case for example, where the source
statement is:

Y == FUNCF(X),
xxx is the address of the variable X, yyy is the address
of the variable Y, and R is the identifier of the func
tion FUNCF; the arithmetic string compiled from
the arithmetic statement is:

~700yyy ~R!
At the time an arithmetic statement is executed,

the three-character machine address of the compiled

10 Fortran: 1401 Specs. and Op. Proc.

statement within the arithmetic string (the first posi
tion after ~ 700) is stored in positions 084-086. There
fore in his function routine the user can refer to the
address of the compiled arithmetic statement contain
ing the reference to the function by using the contents
of positions 084-086.

For convenience, the address sto~ed in locations
084-086 will be referred to as ARAD R. Therefore the
address of yyy in our example is ARADR+2, the ad
dress of xxx is ARAD R +6, and the address of the
next statement to be executed in the program is
ARADR+9. Any zone bits present in the tens posi
tion of xxx and yyy do not refer to address modifica
tion by an index register.

At the time of the branch to the function, the 1401
Fortran arithmetic routine has processed the argument
X. The value of X is stored in a field whose address is
279+X3 (index register 3). Position 280 of this field
contains a word mark. If X is a fixed-point variable,
index register 3 contains the fixed-point precision
value, k. If X is a floating-point variable, index register
3 contains the floating-point precision value plus two
(f+2), position 280 contains the most significant (left
most) digit of the mantissa, and the characteristic
(exponent) is stored in positions 1677-1679. (If the
mantissa is zero, the equal-compare latch is set.)

The following space is available to the user:

1. positions 1-80.
2. the index register positions.
3. positions 100-332.
4. any unused storage.
S. any area reserved by the control card.

Arithmetic Expressions

An expression is a meaningful sequence of constants,
variables (subscripted or non-subscripted), and func
tions, separated by arithmetic operation symbols.

Examples:
1
A
I
A(I)
A(I)+(B/C)*2.0
A**I-(2.*B)/C

Arithmetic Operation Symbols

The five basic arithmetic operations are expressed by
the following symbols:

+
*
/
**

(plus sign; addition)
(minus sign; subtraction)
(asterisk; multiplication)
(slash; division)
(two asterisks; exponentiation).

Rules for Writing Expressions

The following rules must be observed when writing
1401 Fortran expressions:

1. The mode of arithmetic in an expression can be
either fixed-point or floating-point, and must not be
mixed except in the following cases:

a. A floating-point quantity can appear in a fixed
point expression as an argument of a function
such as, XFIXF(C).

b. A fixed-point quantity can appear in a floating
point expression as a function argument, such as
FLOATF(I); as a subscript such as AU, K); or
as an exponent such as A * *N.

2. Two arithmetic-operation symbols cannot appear
together, unless they an; separated by parentheses.
Therefore A * - Band + -A are not valid expres
sions; however A* (-B) and +(-A) are valid ex
pressions.

3. In exponentiation:
a. A floating-point exponent should not be used

with a base that is a negative number, because
a non-integer power of a negative number can
lead to imaginary values. Also, if a floating-point
exponent of a negative number is integral, the re
sult will be a positive number regardless of
whether the exponent is odd or even.

b. A fixed- or floating-point negative number raised
to a fixed-point power gives the answer with
the correct sign.

c. A fixed-point zero raised to a fixed-point power
other than zero results in a fixed-paint zero an
swer. A floating-point zero raised to either a
fixed- or floating-point power other than zero
results in a floating-point zero answer.

d. Zero to the zero power will give the results in
dicated in each of the following cases:
0**0 = 1
0.**0 = 1.
0.**0. = 1.

Note: Zero to the zero power also causes the error message
ZTZ to be printed.

Hierarchy of Operations

The use of parentheses in an algebraic expression
clearly establishes the intended sequence of opera
tions. The heirarchy of operations in an expression not
specified by the use of parentheses is in the usual
order:

Exponentiation

Multiplication and Division
Addition and Subtraction

For example, the expression

A+B/C+D**E*F-G

is taken to mean

A + (B/C) + «D**E)*F) - G

Parentheses that have been omitted from a sequence
of consecutive multiplications and divisions (or con
secutive additions and subtractions) are understood
to be grouped from the left. Thus, if 0 represents
either * or / (or either + or -), then

AoBoCoDoE

will be taken by Fortran to mean

((((A 0 B) 0 C) 0 D) 0 E)

The expression ABC, which is sometimes considered
meaningful, cannot be written as A**B**C. It should
be written as (A**B) **C or A** (B**C), whichever
is intended.

1401 Fortran Statements
There are 25 different statements in the 1401 Fortran
language. They are divided into four groups:

1. The arithmetic statement specifies a numerical com
putation.

2. Control statements govern the flow of the program.
There are eleven different control statements.

3. Input/Output statements provide data input and
output in a specified format. There are eleven dif
ferent input/output statements.

4. Specification statements provide information about
the storage allocation of the variables used in the
program. There are two specification statements.

Arithmetic Statement

The 1401 Fortran arithmetic statement defines a nu
merical calculation. It closely resembles a conven
tional arithmetic formula; however, the equal sign of
the statement specifies replacement rather than equiv
alence.

General Form: a = b, where:

1. a is fixed- or floating-point subscripted or non
scripted variable.

2. b is an expression.

Examples:

Ql=K
A (I) = B (I) + SINF (C (I))

11

The result of the arithmetic calculation specified by
the expression (b) is stored in the field designated by
the variable (a) on the left in fixed- or floating-point,
according to whether the variable is fixed point or
floating point.

If the variable on the left is fixed point and the ex
pression on the right is floating point, the result will
first be computed in floating point and then truncated
to an integer. Thus, if the result is +3.872, the fixed
point number stored will be +3 (not +4). If the
variable on the left is floating point and the expression
on the right fixed point, the latter will be computed
in £xed point, and then converted to floating point.

Arithmetic statements can produce a number of use
ful effects. Here are some examples:

A == B Store the value of B in A.
I = B Truncate B to an integer, convert to

fixed point, and store in I.

A== 1

1 =1+1

Convert I to floating point, and store
inA.

Add 1 to I and store in I. This example
illustrates the fact that an arithmetic
statement is not an equation, but is an
instruction to replace a value.

A = 3.0oB Replace A by 3B.

However, be careful to avoid invalid statements such
as:

Not accepted. The expression is mixed,
i.e., contains both £xed-point and float
ing-point quantities.

Not accepted. The expression is mixed.

Note: If characters that were read under the A-conversion
format-specification (see A-Conversion) are referenced in an
arithmetic statement, only the numeric portion of these charac
ters (ex~ept for the sign) are considered. For example, MIN
would be equivalent to - 495.

Control Statements

The second category of 1401 Fortran statements is a
set of eleven statements enabling the user to control
the sequence in which the program statements are to
be executed.

Unconditional GO TO

General Form: GO to n.
n is a statement number.

Example:

GO TO 3

The unconditional GO TO statement transfers control
of the program to the specified statement.

12 Fortran: 1401 Specs. and Gp. Froc.

Computed GO TO

General Form: GO TO (nl' n2, ... , nm), i
nb n2 , ••• , nm are statement numbers and t IS a
non-subscripted fixed-point variable. The range of
i must be such that the value of i is 1 < i < 10.

Example:

GO TO (30,42,50,9), I

The computed GO TO statement transfers control to
statement number nl , n2 , n3, . . . , nrn, depending on
whether the value of i at the time of execution is 1, 2,
3, . . . , m, respectively. Thus in the example, if 1 is
3 at the time of execution, a transfer to the statement
whose number is third in the list, statement 50, will
occur. This statement is used to obtain a computed
many-way branch.

IF

General Form: IF (a) nl> n2, n3
a is an expression and nl , n 2 , n3 are statement num
bers.

Example:

IF (A (}, K) -B) 10,4,30

The IF statement conditionally transfers control to
another statement of the program. Control is trans
ferred to the statement number nl , n2 , or n3 , depend
ing on whether the value of a is less than, equal to, or
greater than zero. Thus, in the example, if (A (J, K) -
B) is zero at the time of execution, transfer to state
ment number 4 occurs.

Sense Light

General Form: SENSE LIGHT i

i is 0, 1,2,3, or 4.

Example:

SENSE LIGHT 3

The term sense light refers to symbolic binary switches
in the 1401 system. If i is 0, all sense lights are turned
off; otherwise SENSE LIGHT i is turned on.

IF (Sense Light>

General Form: IF (SENSE LIGHT i) n l , n 2

n l and n2 are statement numbers and i is 1, 2, 3,
or 4.

Example:
IF (SENSE LIGHT 3) 30, 40

Control is transferred to statement number nj if sense
light i is on, or statement number n 2 if sense light i
is off. If sense light i is on, it is turned off.

IF (Sense Switch)

General Form: IF (SENSE SWITCH i) n1) n 2

n1 and n 2 are statement numbers and i is 1, 2, 3, 4,
5, or 6.

Example:
IF (SENSE SWITCH 3) 30, 108

Control is transferred to statement number n 1 if
sense switch i is on, or statement number n 2 if sense
switch i is off. Sense switches B through G correspond
to the values of i, 1 through 6, respectively.

Last Card Test. A test for the last card can be made
using the statement IF (SENSE SWITCH 0) n 1 , n 2 • With
sense switch A on, the IF (SENSE SWITCH 0) n 1 , n 2

statement will transfer program control to statement
n 1 when the last card indicator is on; otherwise
control will transfer to D 2 • (This particular form of
the statement is unique to 1401 Fortran.)

DO

General Form: DO n i = m1 , m2 or DO ~ i = mI , m2 , m3
n is a statement number, i is a nonsubscripted fixed
point variable, and m1 , m 2 , m3 are each either an
unsigned fixed-point constant -Jor _ nonsubscripted
fixed-point variable. If m3 is not stated, it is taken
to be l.

Examples:
DO 30 1= 1,10
DO 30 I = 1, M, 3

The DO statement is a command to execute repeatedly
the statements that follow, up to and including state
ment number n. The first time, the statements are
executed with i = mI' For each succeeding execution,
i is increased by m3. Mter they have been executed
with i equal to the highest value that does not exceed
m2 , control passes to the statement following the last
statement in the range of the DO. If, in the initial setup,
m1 > m 2 , there is no execution of the loop.

The range of a DO is that set of statements that will
be executed repeatedly; that is, it is the sequence of
consecutive statements immediately following the DO,

up to and including the statement numbered n.

The index of a DO is the fixed-point variable i, which
is controlled by the DO in such a way that its value
begins at m l , and is increased each time by m 3 , until
it is about to exceed m:!. Throughout the range of a
DO, i is available as data for any computations, either
as an ordinary fixed-point variable or as the variable
of a subscript. After the last execution of the range,
the DO is said to be satisfied.

As an example of the use of a DO statement, suppose
that control has reached statement 10 of the program:

10 DO 11 I = 1, 10
11 A(I) = P'N(I)
12

The range of the DO is statement 11, and the index is
I. The DO sets I to 1 and control passes into the range.
The value of N 1 is converted to floating point, and
stored in location AI' Because statement 11 is the last
statement in the range of the DO and the DO is un
satisfied, I is increased to 2 and control returns to the
beginning of the range, statement 11. The value of
2N~ is then computed and stored in location A2 • The
process continues until statement 11 has been exe
cuted with I = 10. Because the DO is now satisfied,
control passes to statement 12.

Among the statements in the range of a DO can be
other DO statements. If the range of a DO includes an
other DO, then all of the statements of the included DO

must also be in the range of the inclusive DO. A set of
DO'S satisfying this rule is called a nest of DO's (Fig
ure 3).

No transfer is permitted into the range of any DO.

from outside its range. For example, in Figure 3, 1, 2,
and 3 are permitted transfers, but 4, 5, and 6 are not.

When control leaves the range of a DO in the ordi
nary way (that is, when the DO becomes satisfied and
control passes on to the next statement after the range)
the exit is said to be a normal exit. After a normal exit

DO

r---D_O ~1 y"
.4 No

--------------i.~ 2 Yes

.~~-------------- 5 No

6 No

Figure 3. Nest of DO's

13

from a DO occurs, the value of the index controlled by
that DO is not defined, and the index cannot be used
again until it is redefined.

However, if exit occurs by a transfer out of the
range, the current value of the index remains available
for any subsequent use. If exit occurs by a transfer
out of the ranges of several DO'S, the current values
of all the indexes controlled by those DO'S are pre
served for any subsequent use.

Restrictions on statements in the range of a DO are:

1. Any statement that redefines the value of the index
(i) or of any of the indexing parameters (m' s) is
not permitted.

2. The first statement in the range of a DO must be an
executable Fortran statement.

S. The last statement is the range of a DO cannot be
a branch instruction (see Continue).

Continue

General Form: CONTINUE

Example:

CONTINUE

CONTINUE is a dummy statement that causes no addi
tional instructions in the object program. It is most
frequently used as the last statement in the range of
a DO to provide a branch address for IF and co TO

statements that are intended to begin another repeti
tion of the DO range.

is:
An example o:f/a program that requires a CONTINUE

10 DO 12 I = 1, 100
11 IF (ARC - VALUE (I)) 12,20,12
12 CONTINUE

This program will scan the lOO-entry VALUE table
until it finds an entry that equals the value of the
variable ARC, whereupon it exits to statement 20 with
the value of I available for subsequent use. If no entry
in the table equals the value of ARC, a normal exit to
the statement following the CONTINUE occurs.

Pause

General Form: PAUSE or PAUSE n
n is an unsigned fixed-point constant less than 103

•

14 Fortran: 1401 Specs. and Gp. Proc.

Examples:

PAUSE

PAUSE 777

During the execution of the object program, the PAUSE

statement causes the machine to halt and display at
the console the number n (see Object Time Halts or
Error Conditions). If n is not specified, it is understood
to be zero. Pressing the start key causes the object
program to resume execution at the next instruction.

Stop

General Form: STOP or STOP n
n is an unsigned fixed-point constant less than 103

•

Examples:

STOP

STOP 333

The STOP statement causes a halt in such a way that
pressing the start key has no effect. Therefore, in
contrast to PAUSE, this statement is used where a
terminal, rather than a temporary, stop is desired.
When the program halts, the number n is displayed
on the console. (See Object Time Halts or Error Condi
tions.) If n is not specified, it is understood to be zero.

End

General Form: END

Example:

END

The END statement is the last statement of the source
program. Although the general form of this statement,
as specified for other Fortran systems, is permissible
when used in a 1401 source program, only the word
END has any significance.

Input / Output Statements

There are eleven 1401 Fortran statements available
for specifying the transmission of information, during
execution of the object program, between storage and
input/ output units:
1. Five statements (READ, READ INPUT TAPE, PUNCH,

PRINT, and WRITE OUTPUT TAPE) that cause trans
mission of a specified list of data between storage
and an external input/output medium such as
cards, printed sheet, or magnetic tape.

2. One statement (FORMAT) that is non-executable. It
specifies the arrangement of the information in the
external input/output medium with respect to the
five input/output statements of group 1, and con
verts the information being transmitted, if nec
essary, to or from an internal notation.

3. Two statements (READ TAPE, and WRITE TAPE) that
cause the transmission of information that is al
ready in internal machine notation, and thus need
not be converted under control of a FORMAT state
ment.

4. Three statements (END FILE, REWIND, and BACK
SPACE) that control magnetic tape units.

Lists of Quantities

Of the eleven input/output statements, seven call for
the transmission of information and must include a
list of the quantities to be transmitted. The order must
be the same as the order in which the words of infor
mation exist (for input), or will exist (for output) in
the input/output medium.

For example, if the list:

A, B(3), (C(I), D (I,K), 1= 1,10), ((E(I, J),
I = 1, 10, 2), F 0, 3), J = 1, K)

is used with an output statement, the information will
be written on the output medium in the order:

A, B (3), C(l), D(l, K), C(2), D(2, K), ,C(10),

D(10,K),

E (1, 1), E (3, 1),.. ,E (9, 1), F (1, 3),

E (1, 2), E (3, 2), ... , E (9, 2), F (2,3),

E (1, K), E (3, K), ... , E (9, K), F (K, 3)

If the list is used with an input statement, the in
formation is read into storage from the input medium.
The order of the list can be considered equivalent to
the "program":

1 A

2 B (3)

3 DO 5 1= 1, 10

4 C(I)

5 D(I, K)

6 DO 9 J = 1, K

7 DO 8 I = 1, 10, 2

8 E (I, J)
9 F 0, 3)

Note that the parentheses in the original list define
the ranges of the implied Do-loops.

For a list of the form K, A (K) or K, (A (I), I = 1, K)
where an index or indexing parameter itself appears
earlier in the list of an input statement, the indexing
will be carried out with the newly read-in value.

Matrices

1401 Fortran treats variables according to conventional
matrix practice. Thus, the input/ output statement

READ 1, ((A (I, J), I = 1, 2), J = 1, 3)

causes the reading of six (2 rows X 3 columns) items
of information. The items will be read into storage in
the same order as they are found on the input medium:

A1,] A~'l A],~ A:!,:! A]'3 A Z'3.

Note that the numeral 1, following READ, in this
case specifies format statement number 1 (see F annat) .

When input/output of an entire matrix is desired, an
abbreviated notation can be used for the list of the
input/ output statement. Only the format-statement
number and the name of the array are required. Thus,
the statement,

READ 1, A

is sufficient to read in all of the elements of the array
A, according to format statement number 1. In
1401 Fortran, the elements, read in by this notation,
are stored in their natural order, that is, in order of
increasing storage. Note that the dimensions of an ar
ray must be specified (see Dimension).

Format

The five input! output statements of group one (see
Input-Output Statements) require, in addition to a list
of quantities to be transmitted, reference to a FOR~IAT
statement that describes the type of conversion to be
performed between the internal machine language and
the external notation for each quantity in the list.

General Form:

FORMAT (5], S~, , S'n/)

Each field, Si, is a format specification.

Example:

FORMAT 02/(E12.4, FI0.2))

1. FORMAT statements are not executed. They ean be
placed anywhere in the source program, except as
the first statement in the range of a DO statement.
Each FORMAT statement must be given a statement
number.

2. The FORMAT statement indicates, among other
things, the maximum size of each record to be trans
mitted. In this connection, remember that the FOR
MAT statement is uscd in conjunction with the list
of some particular input/output statement, except
when a FOR~IAT statement consists entirely of H
conversion fields. In all other cases, control in the
object program switches back and forth between

1.5

the list (which specifies whether data remains to be
transmitted) and the FORMAT statement (which
gives the specifications for transmission of that data).

3. Records must consist of one of the following:

a. A tape record with a maximum length corre
sponding to the printed line of the printer.

b. A punched card with a maximum of 80 char
acters.

c. A line to be printed on-line, with a maximum of
100, or 132 characters, depending on the printer
used.

4. The initial left parenthesis begins a record. In a
read operation this means that a record is read.
However, in a write operation, an output record is
begun, but not written.

5. A slash terminates the current record. If list ele
ments remain to be transmitted, a slash also begins
a new record. In a read operation a slash means
that no more information is obtained from the last
record read; and in a write operation, that the
output record which has been developed is written
(even though blank, as when two slashes are ad
jacent).

6. The final right parenthesis of the FORMAT statement
terminates the current record. If list elements re
main to be transmitted, it also begins a new record
and repeats. A repeat starts with the last repetitive
group if there is one. (See Repetition of Groups.)
Otherwise it starts with the specification immedi
ately following the first left parenthesis of the
FORMAT statement.

7. During input/output of data, the object program
scans the FORMAT statement to which the relevant
input! output statement refers. When a specification
for a data field is found and list items remain to be
transmitted, editing takes place according to the
specification, and scanning of the FORMAT statement
resumes. If no list items remain, the current record
and execution of that particular input/output state
ment are terminated. Thus, an edited input! output
operation is brought to an end when no items re
main in the list, except when the next element to
the right is an H conversion. In this case, the H
conversion is transmitted.

Format Specification

FORMAT statement specifications designate:

For input:

1. The arrangement of data read in.

2. The type of conversion required for numeric data.

16 Fortran: 1401 Specs. and Op. Proc.

3. The space set aside for alphameric text to be read
in.

4. The input fields to be skipped or ignored.

5. The extent of each input record.

For output:

1. The arrangement of data to be written, punched, or
printed out.

2. The type of conversion and scale factor required
for each numeric field.

3. The alphameric text to be written, punched, or
printed out.

4. The output fields to be skipped or ignored.

5. The extent of each output record.

6. (In printing) the printer carriage-control character.

Numeric Field Specifications

Three types of conversion are available for numeric
data:

Internal Conversion Code

Floating point E
Floating point F
Fixed point I

External

Floating point with E exponent
Floating point without exponent
Fixed point

These types of conversion are specified in the forms
Ew.d, Fw.d, Iw, where:

1. E, F, and I represent the type of conversion

2. w is an unsigned fixed-point constant that repre
sents the field width for converted data. This field
width can be greater than required in order to pro
vide spacing between numbers.

3. d is an unsigned fixed-point constant or zero that
represents the number of positions of the field that
appear to the right of the decimal point.

For example, the statement FORMAT (lHb, 12, E12.4,
FIO.4) causes the following line to print (when given
in conjunction with a PRINT statement):

+ - +
Stored data Q0027 ~320963102 1634352602

Field specifications 12, E12.4, FIO.4

PrinteQ line 27b-0.9321Eb02bbb-0.OO76

where b represents blanks. (See Carriage Control for
an explanation of the specification 1Hb.)

Notes on E-, F-, and I-Conversion

1. Specifications for successive fields are separated by
commas.

2. No format specification that provides for more char
acters than permitted for a relevant input/output
record should be given. Thus, a format for a record

to be printed should not provide for more charac
ters (including blanks) than the capabilities of the
printer.

3. Information to be transmitted with E- and F -con
version must have floating-point names. Informa
tion to be transmitted with I -conversion must have
fixed-point names.

4. The field width w, for F -conversion on output, must
include a space for the sign, a space for the decimal
point, and a space for a possible zero which pre
cedes the decimal if the absolute magnitude is less
than 1. Thus w 2: d + 3.

Note: The maximum value of d that can be used is 20.
The field width w, for E-conversion on output, must
include one space for the sign, one space for possi
ble rounding, one space for a decimal point, and
four spaces for: the E, exponent sign, and exponent.
Thus w 2::. the scale factor + d + 7.

5. The exponent, which can be used with E-conver
sion, is the power of 10 to which the number must
be raised to obtain its true value. The exponent is
written with an E followed by a minus sign if the
exponent is negative, or a plus sign or a blank if the
exponent is positive, and then followed by one or
two numbers which are the exponent. For example,
the number .002 is equivalent to the number .2E-02.

6. If a number converted by I-conversion on output re
quires more spaces than are allowed by the field
width w, the excess on the high-order side is lost.
If the number requires fewer than w spaces, the
leftmost spaces are filled with blanks. If the number
is negative, the space preceding the leftmost digit
will contain a minus sign if sufficient spaces have
been reserved, otherwise the minus sign will be lost.

Scale Factors (With Output Only). A scale factor can
be applied to data that is to be written, punched, or
printed as a result of F -type conversion. The scale
factor is the power-of-10 by which data is multiplied
before conversion. The designation nP, preceding an
F -type field specification, indicates a scale factor n.
For example, the specification 2PF10.4 results in multi
plication of the data by 100 (102

) before conversion.
Thus in the earlier example, the internal data

1634352602 prints as: bbb-0.7634. Scale factor (for
F -type conversion only) can be either a positive or
negative number.

Scale factor can also be used with E-type conver
sion for output. However, only positive scale factors
are allowed, and the magnitude of the converted data
remains constant because the shifting of the decimal
point to the right is offset by reduction of the E-expo
nent. Thus in the earlier example, the field specifica-

- +
tion 2PE12A causes the internal data 9320963102 to
print as: -93.2096EbOO.

Scale factors have no effect on I-type conversion.

A scale factor of zero is assumed if no other factor
is given. A scale factor assigned to an E- or F -type
conversion applies to all subsequent E- or F -type con
versions in the same FORMAT statement, until nullified
by a different scale factor. Thus, for example, the
specifications 2PF10A, E12.4, 4PF10A, E12.4, have the
same effect as the specifications 2PF10A, 2PE12A,
4PF10A, 4PE12A.

Alphameric field Specifications

Fortran provides two ways by which alphameric infor
mation can be transmitted. The internal representation
of the data is the same as the external for both speci
fications.

1. The specification Aw causes w characters to be
read into, or written from, a variable or array name.

2. The specification nH introduces alphameric infor
mation into a FORMAT statement.
The basic difference between A- and H-conversion
is that information handled by A-conversion is
given a variable name or array name. Hence, it can
be referred to by means of this name by more than
one input or output statement list. Whereas, infor
mation handled by H -conversion is not given a
name and may not be referred to or manipulated in
storage in any way.

A-Conversion. The variable name used in conjunc
tion with A-conversion must be a floating-point vari
able.

1. On input, Aw will be interpreted to mean that a
field of w characters is to be stored without con
version. If w is greater than f, the extra (w -f)
rightmost characters will be dropped. If w is less
than f, the characters will be left-adjusted, and the
words filled out with blanks.

2. On output, Aw will be interpreted to mean that a
field of w characters is to be the result of trans
mission from storage without conversion. If w ex
ceeds f, only f characters of output will be trans
mitted followed by w -f blanks. If w is less than
f the leftmost w characters of the word will be
transmitted.

Note: With f = 8, the format specification AlO will print an
eight-character mantissa and a two-character exponent.

H-Conversion. The specification nH is followed in
the FORMAT statement by n alphameric characters, and

17

XY=b-93.210bbbbbbbb

XY = 9999. 999bbSNSSWl
XY=bb28.768bbbbbbbb

Figure 4. Examples of A- and H-Conversions

should be separated from the next field by a comma.
For example:

31H THIS IS ALPHAMERIC INFORMATION

Note that blanks are considered alphameric charac
ters and must be included as part of the count n. The
effect of nH depends on whether it is used with input
or output.

1. On input, n characters are extracted from the input
record and replace the n characters included with
the source program FORMAT specification.

2. On output, the n characters following the specifica
tion, or the characters that replaced them, are writ
ten as part of the output record.

Figure 4 shows an example of A- and H-conversion
in a FORMAT statement.

The statement FORMAT (4HbXY =, F8.S,A8) might
produce the lines shown in Figure 4 where b indicates
a blank character.

Figure 4 assumes steps in the source program read
the data SNSSW1, print the data when sense switch
1 is on, and print a word containing six blanks when
sense switch 1 is off.

Note: FORMAT (lHb,3HXY=,FB.3,AB) is equivalent to FOR

MAT (4HbXY=,F8.3,A8) where b is a blank. See Carriage
Control.

Blank fielcls- X-Conversion

The specification nX introduces n blank characters into
an input/output record where n must be less than or
equal to the maximum record length.

1. On input, nX causes n characters in the input record
to be skipped, regardless of what they actually are.

2. On output, nX causes n blanks to be introduced
into the output record.

Repetition of Field Format

1 t may be desired to perform an input or output op
eration in the same format on n successive fields with
in one record. This can be specified by giving n, an
unsigned integer, before E, F, I, or A. Thus, the

18 Fortran: 1401 Specs. and Op. Proc.

field specification SE12.4 is the same as writing E12.4,
E12.4, E12.4.

Repetition of Groups

A repetitive group is a nonzero fixed-point constant
followed by a left parenthesis, a specification list, and
a right parenthesis. A repetitive group cannot itself
contain a repetitive group. Thus, FORMAT (2(F10.6,
E10.2), 14) is equivalent to FORMAT (F10.6, EIO.2,
F10.6, E10.2, 14).

Mu/tip/e-Recorcl Formats

See Format: General Form, items S, 4, and 5.

The statement FORMAT (SF9.2, 2F10.S / / 12 / /)
would specify a multirecord output block in which
records 1, 6, 11 have the format (SF9.2, 2F10.3),
records 2, 7, 12. .. are blank, records S, 8, IS.. ..
have the format (12), and records 4 and 5, 9 and 10,
14 and 15,.. .. are blank. On input, the same for
mat descriptions apply and the blank records are
skipped.

If a multiple-record format is desired in which the
first two records are to be read or written according to
a special format and all remaining records according
to another format, the last record specification should
be defined as a repetitive group by enclosing it in
parentheses; for example,

FORMAT (I2, SE12.4/2F10.S, SF9.4/(lOF12.4))

If data items remain to be transmitted after the for
mat specification has been completely interpreted, the
format repeats from the last previous left parenthesis.
Group repetition applies again if it is present. For ex
ample, consider the FORMAT statement:

FORMAT (SE 1O.S, 2 (I2, 2F 12.4), E2B.17)

If more items in the list are to be transmitted after
this format statement has been completely used, the
FORMAT repeats from the left parenthesis preceding
12, and the 2 for group repetition preceding this left
parenthesis applies again.

As these examples show, both the slash and the right
parenthesis of the FORMAT statement indicate a termi
nation of a record.

Carriage Control

Control of the printer carriage requires a numerical
character (or blank) in the first position of the output
record for each printed line:

blank Single-space before printing
o Double-space before printing
1-9 Skip to channel 1-9 before printing,

as indicated.

The control character does not appear in the printed
record. This control character is also required in out
put tape records that are to be used for off-line tape
to-printer operations.

The control character is usually provided by a IH or
IX (see Alphameric Field Specifications) as the first
field specification of a FORMAT specification. For ex
ample, the field specification lH6 causes a 6 to be in
serted in the high-order position of the output record.
This in turn causes the printer carriage to skip to
channel 6 before printing. The specification lX causes
a blank to be inserted in the output record, resulting
in single-spacing the printer carriage.

When alphamerical text is specified for the high
order field of an output record, the control character
can be included in the alphamerical field specification.
Thus the earlier example under H-Conversion 4HbXY
= is changed to 4H6XY = to cause the printer
carriage to skip to channel 6. The specification can
also be written IH6, 3HXY =.

Data Input to the Object Program

Data input to the object program is punched into cards
according to the following specifications:
1. The data must correspond in order, type, and field

with the field specifications in the FORMAT state
ment. Punching begins in card column 1.

2. Plus signs can be omitted or indicated by a +.
Minus signs are indicated by an II-punch, or an
8-4 punch.

3. Blanks in numeric fields:
a. are regarded as zeros when no digits appear in

the field (blank field).
b. under E- and F - conversion are ignored when

they are to the left or to the right of numeric
characters; for example, the field 123bb under
the conversion F5.2 is interpreted as 1.23.

c. under I-conversion are regarded as zeros when
they are to the left or to the right of numeric
characters.

d. are not permitted between characters.
4. Numbers for E- and F-conversion can contain any

number of digits, but only the high-order f digits
of precision will be retained. (No rounding is per
formed.)

5. In I -conversion only the low-order k digits of pre
cision will be retained (k is the fixed-point pre
cision value).

To permit economy in punching, certain relaxations
in input data format are permitted.
1. Numbers for E-conversion need not have four col

umns devoted to the exponent field. However, if
the exponent field is not four columns, the decimal

point must be punched (see item 2 below). The
start of the exponent field must be marked by an
E or, if that is omitted, by a + or - (not a blank).
Thus, E2, E + 2, + 2 and + 02 are all permissible
exponent fields.

2. Numbers for E- and F-conversion need not have
their decimal point punched. The format specifica
tion will supply it. For example, the number
-09321 E + 02 with the specification E12.4 will be
treated as though the decimal point had been
punched between the 0 and the 9. If the decimal
point is punched in the card, its position overrides
the position indicated in the FORMAT specification.

Control of I/O Operations. The FORMAT statement
indicates the maximum size of each record to be trans
mitted. Except when a FORMAT statement consists en
tirely of alphamerical fields, the FORMAT statement is
used with the list for some particular input/output
statement. Control in the object program transfers
repetitively between the list, which specifies whether
data remains to be transmitted, and the FORMAT state
ment, which gives the specifications for transmission
of that data.

During input/output of data, the object program
scans the FORMAT statement to which the input/output
statement refers. When a specification for a numerical
field is found and list items remain to be transmitted,
input/ output takes place according to the specification
of the FORMAT statement. If no items remain, trans
mission ceases.

Read
General Form: READ n, List

n is the statement number of a FORMAT statement,
and List is as previously described under Lists of
Quantities.

Examples:
READ 1, DATA

READ 1, ((ARRAY (I, J), 1= 1,3), J = 1,5)

The READ statement causes data to be read from one
or more cards as specified by its list and the FORMAT

statement to which it refers. The list specifies storage
locations for numerical input data. The FORMAT

statement:
1. Specifies the arrangement of data on the cards.

2. Specifies the type of conversion required for each
numerical data field.

3. Provides space for alphamerical text to be read
from cards.

4. Specifies card columns that are to be ignored.

5. Should specify a maximum of eighty card columns
for each input record (card).

See Format Specification.

19

Read Input Tape

General Form: READ INPUT TAPE i, n, List
i is an unsigned fixed-point constant or a fixed-point
variable, n is the statement number of a FORMAT

statement, and List is as previously described under
Lists of Quantities.

Examples:
READ INPUT TAPE 5, 30, DATA

READ INPUT TAPE N, 30, K, A (J)

The READ INPUT TAPE statement causes one or more
tape records to be read as specified by its list and the
FORMAT statement to which it refers. Data is read in
external notation by symbolic tape unit i, where i
(constant or variable) can range from 1 to 6. The list
specifies storage locations for numerical input data.
The FORMAT statement:

1. Specifies the arrangement of data within tape rec
ords.

2. Specifies the type of conversion required for each
numerical data field.

3. Provides space for alphamerical text to be read
from tape.

4. Specifies data fields that ~ue to be ignored.
5. Should spccify a maximum of 133 characters for

each input tape record.

Records should be greater than 13 characters. Records
of 13 characters or less are considered noise records
and are bypassed. See Format Specification.

Punch

General Form: PUNCH n, List
n is the statement number of a FORMAT statement,
and List is as previously described under Lists of
Quantities.

Examples:

PUNCH 1, CALC

PUNCH 30, (A(J), J = 1, 10)

The PUNCH statement causes data to be punched into
one or more cards as specified by its list and the
FORMAT statement to which it refers. The list specifies
storage locations of numerical output data. The FOR

~IAT statement:

1. Specifies the arrangement of data on the cards.
2. Specifies the type of conversion and scale factor

required for each numerical data field.
3. Provides alphamerical text to be punched into

cards.
4. Specifies card columns that are to be skipped.
5. Should specify a maximum of eighty card columns

for each output record (card).

See F onnat Specification.

20 Fortran: 1401 Specs. and Op. Proc.

Print

General Form: PRINT n, List
n is the statement number of a FORMAT statement
and List is as previously described under Lists of
Quantities.

Examples:

PRINT 1, CHART

PRINT 2, (A 0), J = 1, 10)

The PRINT statement causes one or more lines of data
to be printed as specified by its list and the FOR~IAT
statement to which it refers. The list specifies storage
locations of numerical output data. The FOR~IAT state
ment:

1. Contains a carriage control character that is not
printed (see Printer Carriage Control).

2. Specifies the arrangement of data to be printed.
3. Specifies the type of conversion and scale factor

required for each numerical field.
4. Provides alphamerical text to be printed.
5. Specifies print positions that are to be skipped.
6. Should specify a maximum of 100 or 132 characters

(exclusive of the carriage control character) de
pending on the model 1403 used.

See Format Specification.
Write Output Tape

General Form: WRITE OUTPUT TAPE i, n, List
i is an unsigned fixed-point constant or a fixed-point
variable, n is the statement number of a FORMAT

statement, and List is as described under Lists of
Quantities.

Examples:
WRITE OUTPUT TAPE 4,30, TOTALS

WHITE OUTPUT TAPE L, 30, (A(J), J = 1, 10)

The WRITE OUTPUT TAPE statement causes one or more
tape records to be written as specified by its list and
the FORMAT statement to which it refers. Data is writ
ten in external notation by symbolic tape unit i, where
i (constant or variable) can range from 1 to 6. The list
specifies storage locations of numerical output data.

The FORMAT statement:

1. Specifies the arrangement of data within tape
records.

2. Specifies the type of conversion and scale factor
required for each numerical data field.

3. Provides alphamerical text to be written on tape.
4. Specifies data fields that are to be skipped.

5. Should specify a maximum of 133 characters for
each input tape record. All output tape records
are 133 characters long. Any record of less than
133 characters is padded with blanks to produce
a 133-character tape record.

See Format Specification.

Read Tape

General Form: READ TAPE i~ List
i is an unsigned fixed-point constant or a fixed-point
variable, and List is as previously described under
Lists of Quantities.

Examples:
READ TAPE 2, ARRAY

READ TAPE K, (AO), J = 1, 10)

The READ TAPE statement causes a single tape record
to be read as specified by its list (a FORMAT statement
cannot be used). Data is read in internal notation by
symbolic tape unit i~ where i (constant or variable)
can range from 1 to 6. Data read by a READ TAPE

statement must have been written previously by a
WRITE TAPE statement. When the list is a single non
subscripted array name, the storage space allocated to
the array must be exactly equal to the tape record
length. When the list contains multiple names or sub
scripted array names, the storage space allocated must
not exceed that specified by the list of the WRITE TAPE

statement that produced the tape record.

See Input/Output Option for further information
on READ TAPE statements.

Write Tape

General Form: WRITE TAPE i~ List
i is an unsigned fixed-point constant or a fixed-point
variable, and List is as previously described under
Lists of Quantities.

Examples:
WRITE TAPE 4, ARRAY

WRITE TAPE K, (A 0), J = 1, 10)

The WRITE TAPE statement causes a single tape record
to be written as specified by its list (a FORMAT state
ment. cannot be used). This statement is frequently
used for temporary bulk storage of data, particularly
arrays. Data is written in internal notation by symbolic
tape unit i, where i (constant or variable) can range
from 1 to 6. The length of the tape record is deter
mined by the list.

When the list is a single non-subscripted array
name, the maximum length of the record is restricted
only by available storage space. The record length
must not be less than 13 characters, because this is
considered to be a noise record.

When the list contains multiple names or sub
scripted array names, the record length must not
exceed 233 characters. There is no minimum record
length, because an intermediate storage area is blank
filled to produce a 233-character tape record. Note
that array names must be subscripted when they
appear in a 1nultiple-name list.

See Input/Output Option for further information
on WRITE TAPE statements.

End File

General Form: END FILE i
i is an unsigned fixed-point constant or a fixed-point
variable.

Examples:
END FILE 6
END FILE K

The END FILE statement causes a tape mark to be writ
ten by symbolic-tape-unit i.

Rewind

General Form: REWIND i
i is an unsigned fixed-point constant or a fixed-point
variable.

Examples:
REWIND 3

REWIND K

The REWIND statement causes symbolic-tape-unit i to
be rewound.

Backspace

General Form: BACKSPACE i
i is an unsigned fixed-point constant or a fixed-point
variable.

Examples:

BACKSPACE 5
BACKSPACE K

The BACKSPACE statement causes symbolic-tape-unit i
to backspace one physical record. Note that more
than one physical record can be produced by a WRITE

OUTPUT TAPE statement, thereby requiring more than
one BACKSPACE operation.

Specification Statements

The final class of 1401 Fortran statement consists of
the two specification statements: DIMENSION and
EQUIVALENCE. These are non-executable statements
that control and minimize storage allocation.

Dimension

General Form: DIMENSION v~ V, v~ ...
Each v is the name of an array, subscripted with
one or two unsigned fixed-point constants. Any num
ber of v's may be given.

Example:

DIMENSION A (10), B (5, 15), CVAL (3,4)

21

The DIMENSION statement provides the information
necessary to allocate array storage in the object pro
gram.

Each variable that appears in subscripted form in a
program must appear in a DIMENSION statement of that
program. The DIMENSION statement must precede the
first appearance of that variable. The DIMENSION state
ment lists the maximum dimensions of arrays. In the
object program, references to these arrays can never
exceed the specified dimensions.

In the example given, B is a 2-dimensional array
for which the subscripts never exceed 5 and 15. The
DIMENSION statement, therefore, causes 75 (5 X 15)
storage words to be set aside for the array B.

A single DIMENSION statement can spE:cify the dimen
sions of any number of arrays.

Symbolic tape unit numbers must not appear in a
DIMENSION statement.
Equivalence

General Form:

EQUIVALENCE (a, b, c, .. J, (d, e, f, .. J, ... a, b, c,
d, e, f, . . . can each be a non-subscripted variable,
or a variable with a single integer subscript.

Example:
EQUIVALENCE (A, B (1), C (5)), (D (17), E (3))

The EQUIVALENCE statement affects core-storage assign
ment to th~ object program by indicating that two or
more variables are to be assigned to the same core
storage location. Each pair of parentheses in the state
ment list encloses the names of the variables that are
to be stored in the same location during execution of
the object program.

Any number of equivalences (pairs of parentheses)
can be used in a statement, and any number of vari
able names can be used within an equivalence. How
ever, the names within the equivalence must be either
all. fixed~point or all floating-point, unless the floating
pOInt SIze, plus two, equals the fixed-point size
(f+2=k).

Arrays: An equivalence involving elements of two or
more arrays completely defines the relative locations
of these arrays. In the preceding example, the equiv
alence (D (17), E (3)) implies that D (15) and E
(1) share the same location. If a nonsubscripted ar-,
ray name is given, the subscript is assumed to be 1.
In the example, assuming A is an array name, A (1)
shares core storage with B (1) and C (5).

. To incI~de an element of a two-dimensional array
III an equIvalence, specify its position in the stored se
quence of elements of that array. Suppose that D is an
array defined in the following statement:

DIMENSION D (4, 5).
If D (3,2) is to share a core-storage location with the

22 Fortran: 1401 Specs. and Op. Froc.

variable E, D (7) must appear with E in an equiva
lence, because D (3, 2) is the seventh element of the
array D. See Arrangements of Arrays in Storage.

Simple Variables: If a nonsubscripted variable does
not refer to an array and appears in an EQUIVALENCE

statement, it is treated as a one-dimensional array,
and assigned a location towards the end of core stor
age. Like an array, it is subject to the following re
strictions:
1. It must not be used to represent symbolic tape

unit numbers.
2. It must be subscripted when it appears in a mul

tiple-name list of a READ TAPE or WRITE TAPE

statement.

Input-Output Option
The user can choose the input-output format routine
or designate that no format routine be included in the
object program, depending on the type of input and
output statements required by the program. If an I/O
format routine is required, the user may choose either
(1) the full I/O format routine or (2) the limited I/O
format routine or (3) the full format routine plus the
A-conversion format routine. (See Control Card.)

The full format routine occupies about 2600 posi
tions of core storage and is capable of executing all
types of input and output statements (as described
under Input-Output Statements). The full format rou
tine plus the A-conversion format occupy about 2900
positions of core storage.

The limited format routine occupies 300 positions of
core storage, and is capable of executing only the
READ TAPE and WRITE TAPE instructions of the follow
ing form:

READ TAPE i, arraYI, arraY2, ... , arraYj

'VIUTE TAPE i, arraYI, arraY2, ... , arraYi

Note: Only dimensioned variables can be specified in the list.

Each array is written on tape unit i as a single phy
sical record, therefore these lists are not subject to the
same length requirements as the lists of the ordinary
READ TAPE and WRITE TAPE statements (see Read Tape
and Write Tape under Input-Output Statements).

Records written by WRITE TAPE statements used with
the limited format routine may be read by READ TAPE

statements used with the full format routine, if the
lists satisfy the restrictions of the full format routine
as described under Read Tape and Write Tape.
Note: Only dimensioned variables can be specified in the list.

If the limited format routine can be used, instead
of the full format routine, a considerable amount of
extra storage can be saved for use in computation

(because the full format routine requires 2500 posi
tions and the limited format routine only 300 posi
tions) .

Note: The input-output option also applies to the individual
segments of a segmented program, as though each segment
were a separate program. See Program Linkage.

Program Linkage

The user may want to link two or more programs to
gether for continuous processing; or if a program is
too large to fit into core storage, and therefore broken
into segments, he may want to link the segments for
continuous processing. 1401 Fortran provides such a
facility for linking programs or program segments.
(For the following explanation, the word segment is
used in a general sense to refer to both programs and
program segments that are to be linked with other
programs or program segments.)

22.1

1401 Fortran includes a linkage statement (see
Linkage Statement) that causes:

l. the clearing of only a specified area of core storage
for the next segment to be read, therefore allowing
certain processed data from a segment to be pre
served, in core storage, when the next segment is
read in for execution

2. the reading of the next segment into core storage
for execution.

Segments are compiled separately. The compiled
segments can be read, for execution, from cards, tape,
or both cards and tape (see Preparing the Condensed
Card Decks for Execution under Running Programs
Containing Linkage Routine).

When any compiled segments are to be read from
tape, the user loads those segments with title cards
to identify each segment (see Title Cards) on a tape,
referred to as a library (LIB) tape. Segments are
loaded on the LIB tape using Utility Deck Three
(phase 95 of the 1401 Fortran compiler). In the load
ing process, Utility Deck Three first supplies and loads
a monitor program on the LIB tape. The monitor pro
gram makes it possible to find and correct errors in
segments without rewriting the LIB tape and to
change the order in which segments are read from
the LIB tape for execution. See Monitor Program.

For each segment, the user also has the input-output
format-routine option described under Input-Output
Option. Therefore, depending on the type of input and
output statments required in a particular segment,
the user can specify either the full or limited I/O
format routine, or no format routine if no input and
output statements are required. If the limited format
routine can be used, instead of the full format routine,
a considerable amount of core storage can be saved
for computation in that particular program segment.

Note: The linkage statement allows the user to keep the
processed data from one segment in core storage, while reading
in the next segment. This enables the user to eliminate the
input and output statements that otherwise would have been
required to write or punch out the processed data while the
next segment is read in, and to read in that data for use in the
new segment.

Linkage Statement

General Form: a = XLINKF(m). a represents a fixed
or floating-point variable-name that is either non
subscripted or subscripted with a single variable.
The name a designates the location in array storage
from· which core storage is cleared before reading
in the next segment. m represents a constant or non
subscripted fixed-point variable whose magnitude

must be L 999999. The contents of the field desig
nated by m specifies the location of the next seg
ment.

Examples:

ADUMMY(2000) = XLINKF(2)
MA TRIX(I) = XLINKF(M)

The linkage statement is unique to 1401 Fortran.
Although it is in the form of an arithmetic statement,
it does not perform an arithmetic operation. It is
a control statement that supplies information to a
linkage routine that determines the location of the
next segment to be executed, clears a specified area
of core storage, and reads the next segment into core
storage for execution.

Note: Every segment loaded on the LIB tape must contain
a linkage statement.

Preservation of Array Storage

The variable-name a designates the position in array
storage from which the linkage routine clears storage
before reading in the next segment (see Location of
Next Segment).

1. If a is nonsubscripted or subscripted with a con
stant, the linkage routine clears storage from the
position preceding the first position of array storage
down through position 700. Therefore, all array
storage is saved for the next segment. For example:
1(3) = XLINKF(M) and A = XLINKF(M) both
will result in all of array storage being saved.

2. If a is subscripted with a variable, the linkage
routine clears core storage from the position pre
ceding the array represented by a down through
position 700. Therefore, the portion of array storage
from the array represented by a to the end of array
storage is saved for the next segment. For example:
A(I) = XLINKF(M) results in the portion of array
storage from the beginning of the array A(l), A(2),
... , A(i) to the end of array storage being saved,
regardless of the present value of the variable I.

a may be a two-dimensional array, but must be
given a single subscript if core storage preceding
the array a is to be cleared. For example, if B is a
two-dimensional array, both B(I) = XLINKF(M)
and B(J) = XLINKF(M) result in core storage pre
ceding B(l, 1) being cleared.

Array Storage

The DIMENSION statement provides the compiler with
the information necessary to allocate storage for arrays
of variables. Each different variable name that is sub
scripted must appear (with its largest possible sub
script) in a DIMENSION statement. Each variable in a

23

DIMENSION statement represents an array to the com
piler, and the number of elements in the array is deter
mined by the subscript. For example, if the variable
A(2) were specified in a DIMENSION statement, A(I)
and A(2) make up the corresponding array that would
be allocated storage. See Arrangements of Arrays in
Storage for more examples of arrays.

The order in which the compiler takes arrays for
storage depends on two factors:

1. the order in which the DIMENSION statements appear
in the source program and

2. the order in which the subscripted variables appear
in the DIMENSION statement.

Note: The individual elements of each array are stored as
described under Arrangements of Arrays in Storage.

In the following example, Order refers to the order
in which the DIMENSION statements are read into core
storage:

Order Statements

1 DIMENSION MATRIX (3, 4), VECTOR(3)
2 DIMENSION A(2), B(2), C(l)
3 DIMENSION ARG(5), ANS(7)

The resulting array storage is as follows, with ARC(I)
being assigned the low address, VECTOR(3) the high
address, and the remaining variables being assigned
addresses between them in the order specified:

ARG(1), ARG(2), ... , ARG(5), A;NS(l), ANS(2), ... , ANS(7),
A(1), A(2), B(1), B(2), C, MATRIX(l,I), MATRIX(2,1),
MATRIX(3,1), MATRIX(I,2), ... , MATRIX(1,3), ... ,
MATRIX(1,4), ... , MATRIX(3,4), VECTOR(l), VECTOR(2),
VECTOR(3).

Notes on Array Storage

1. If arrays are to be saved from one segment to the
next:

a. They must be the last arrays specified in the
DIMENSION statement if only one DIMENSION

statement is used.

b. If more than one DIMENSION statement is used,
the DIMENSION statement(s) defining the addi
tional arrays should occur after the DIMENSION

statement defining the arrays to be saved.

2. The saved arrays from the previous segment may be
given different variable-names in the current seg
ment, as long as the size and mode (fixed-point or
floating-point) of each array remains the same. The
same area for both fixed-point and floating-point
arrays may be reserved only if the fixed-point pre
cision equals the floating-point precision plus two,
that is, k = f + 2.

24 Fortran: 1401 Specs. and Ope Proc.

3. EQUIVALENCE statements containing elements of ar
rays affect the allocation of array storage for those
elements. See EQUIVALENCE for an explanation
and example.

4. Simple variables are not saved from one segment
to another, however, they may be saved by includ
ing them in array storage by:

a. defining them as a single-element array in a
DIMENSION statement, or

b. including them in an EQUIVALENCE statement.

Location of Next Segment

The subscript m specifies whether the next segment is
to be taken from cards or tape and which segment on
tape if tape is designated, or whether control is to
pass to the monitor program.

1. If m = 0, the next segment will be taken from
cards. Any unread data cards that precede the next
segment are ignored. The following examples cause
the next segment to be read from cards:

A = XLINKF (0)

A = XLINKF (M), where the contents
of the field designated by M is zero.

2. If m>O, the next segment will be taken from tape.
In this case the value of m must be a segment
number (see Title Cards) to identify the segment.
The follOWing examples cause segment three to be
taken from tape:

A = XLINKF (3)
A = XLINKF(M), where the field de

signated by M contains 3.

3. If m <0, control will pass to the monitor program.
(See Monitor Program.) The following examples
cause control to pass to the monitor program:
A =XLINKF (-1)
A = XLINKF (M), where the field designated by
M contains -1.

Title Cards

Each program segment to be written on the LIB tape
must have a title card to give the segment a number.
The format of the title card is as follows:

Columns Contents

8-10 LIB
12-17 Program segment number

The program segment number may be any number
the user wishes, however, it must be six digits long.
Therefore if the program number is 17, columns 12-17
must contain 000017, respectively.

The Monitor Program

If segments are to be executed from tape or both cards

and tape, Utility Deck Three (phase 95) is used to
load the appropriate segments on tape. Before Utility

Deck Three loads segments on tape, it first supplies

and loads a monitor program. The tape that contains

the monitor program and segments is referred to as a

LIB (library) tape. (If the segments are to be executed
only from cards, Utility Deck Three is not used and,

therefore the monitor program is not supplied.)

The monitor program has three main functions:

1. It initially gets the program into operation by de
termining the location of the first segment and
reading it into core storage for execution.

2. Between segments it can provide the user with a
core-storage dump of the segment just executed.

3. It provides the user with the facility to change the
order in which segments are normally executed.
(That order was determined by the linkage state
ments in each of the segments.)

In each case the monitor program requires informa

tion from a special control card, called a call card.
Call cards are only used with the monitor program.

The format of a call card is as follows:

Card
Columns Contents

1-4 Either the letter
C followed by a
three-digit ma
chine address
or blanks.

8-10 LIB

12-17 Either a six-digit
segment number
or blanks.

19-24 Either a six-digit
segment number
or blanks.

Explanation

The letter C followed by the three
digit machine address specifies that
core storage is to be cleared from
the three-digit address down
through position 700 before the
next segment, specified by columns
12-17, is read in for execution.
Blanks indicate that no core stor
age is to be cleared before the next
segment is read in.

LIB identifies the card.

A segment number specifies which
segment on tape is to be read in
next for execution. Blanks indicate
the next segment is to be read
from cards.

The contents of this field is stored
and used for comparing against
subsequent segments to be read
from tape. When a match is made
with the number of a subsequent
segment, the monitor program is
called instead of the segment.

Note: The word first can be substituted for the word next in
each of the explanations tf the monitor program is determining
the location of and reading the first segment.

Initialize Operation

The procedure for running a program that has any
segments on tape is such that the monitor program is
always read into core storage first. In this case the first
card in the reader should be a call card, because the
monitor program reads cards until it finds a call card.
Therefore, any cards preceding the call card are ig
nored and the information from them is lost. The moni
tor program checks columns 12-17 of the call card to
determine the location of the first segment. The con
tents of columns 19-24 is stored. If a C followed by a
three-digit machine address is in columns 1-4, the
monitor program will clear the storage specified be
fore reading in the first segment.

Using the Monitor Program Between Segments

The monitor program can also be called between pro
gram segments to provide a core-storage dump of the
last segment executed, change the order in which
segments are executed, or both. In each case, as in the
case of determining the first segment, the user must
provide a call card for the monitor program to read.

The linkage statement of a segment calls for the
monitor program when the field designated by the
variable m contains either:

1. a negative number, or

2. a number that equals the segment number stored
from columns 19-24 of the last call card that was
read.

Note: The last call card that was read would be the initial
call card if the monitor program was not previously called.

After the monitor program is called, the linkage
routine reads the monitor program into core storage.
The monitor program will give a core-storage dump
of the segment just executed if (1) the field designated
by m in the linkage statement contains a negative
number and sense switch G is on, or (2) the contents
of the field designated by m matches the segment
number stored from columns 19-24 of the last call card
that was read. The user can suppress the core-storage
dump only if the monitor program is called because
the field designated by m contains a negative number
and sense switch G is oU.

After the core-storage dump (if any), the monitor
program reads cards until it finds a call card. Data
from cards preceding the call card is ignored. The
monitor program stores the contents of columns 19-24
of the new call card to replace the stored contents of
columns 19-24 of the previous call card. The monitor
program then reads columns 12-17 of the new call
card to determine the location of the next segment. If

25

columns 1-4 contains a C followed by a three-digit ma
chine address, the monitor program clears the core
storage specified before reading in the next segment
for execution.

The stored contents of columns 19-24 of the new
call card will later be compared against the contents
of the field designated by the variable m in subsequent
linkage statements until the monitor program is again
called and another call card is read.

The facility to call the monitor program enables
the user to find errors in a segment on the LIB tape,
and later when rerunning the program enter the cor
rected segment, without rewriting the LIB tape. The
core-storage dump the monitor program provides can
be used to find errors in a segment by calling the
monitor program to provide the dump after the seg
ment is executed. The core-storage dump is provided
after the linkage statement is executed, therefore a
portion of core storage has been cleared leaving only
the saved arrays and the monitor program. Then, after
correcting the errors and obtaining the corrected
condensed card deck, the user can call the monitor
program just before the segment in error on the LIB
tape is read and can specify in the call card (that the
monitor program will read) that the next segment is to
be taken from cards.

The Processor Program
The 1401 Fortran processor program (compiler) tran
slates the source program and compiles the object
program. The user, however, must supply certain in
formation in a control card used by the processor pro
gram.

Included in this section is a description of the con
trol card and the logical flow of the processor program.

Control Card

It is necessary for a control card (PARAM) to precede
the first card of the source program or program seg
ment to communicate the following information to the
compiler:

1. Core storage size. This specification (a three-char
acter 1401 address) must be equal to or less than
the core storage size of both the compiler machine
and any object machine on which the object pro
gram is to be executed. If it is less than either ma
chine size, that part of core storage beyond the
specified address is unaffected during both com
pilation and execution.

2. The modulus (k) or word-size for the values of
fixed-point (integer) variables in the object pro
gram.

26 Fortran: 1401 Specs. and Op. Proc.

3. The mantissa length (f) for the values of floating
point variables in the object program. Because of
the two-position characteristic on the right, the
word-size for floating-point variables is f + 2.

4. Whether or not a self-loading, condensed object
program deck is to be punched following compila
tion.

5. Whether or not a snapshot of the generated pro
gram in core storage (not including the arithmetic
and format [I/O] routines) is to be printed follow
ing compilation.

6. Whether or not 1401 Fortran is being compiled on
the 1410 in the 1401 compatability mode.

7. Whether or not an input/output format routine
other than the ordinary format routine is to be
included in the object program.

Columns Function

1-5 PARAM - this field identifies the control card.

6-8 The machine language for the highest core storage
address (END) to be used by the compiler and object
program. These are normally the physical limits; e.g.,
19Z for 8,000 positions of core storage available, 19R
for 12,000 positions, and 191 for 16,000 positions.

9-10 The fixed-point modulus (k)
bb (blank) means k = 5
01, the minimum, means k = 1
02 means k = 2

20, the maximum, means k = 20

11-12 The floating point mantissa length (f)
bb (blank) means f = 8
02, the minimum, means f = 2
03 means f = 3
20, the maximum, means f = 20

13 P, if condensed deck is desired; blank if not

14 S, if storage snapshot is desired; blank if not

15 T, if processing on the IBM 1410 in the 1401 compati
bility mode

16 X, if no format routine is desired
L, if the limited format routine (READ TAPE, WRITE

TAPE operations only) is desired
b (blank), if the ordinary format routine is to be used
A, if the A-conversion format routine is to be added
to the ordinary format routine. The A must be
punched for A-conversion to operate correctly.

Logical flow of the Processor

Snapshot Phase (00)

1. Sets word marks for constants.

2. Loads snapshot routine into positions 333-680 of
core storage. (This routine performs a core-storage
dump of a specified amount of core storage.) It
remains there throughout compilation.

System Monitor (01)

1. Brings in next phase from system tape or initiates
reading of next phase from cards, depending on
whether the compiler is being used as card or tape
system.

2. Clears previous phase to insure that no group-mark
word-mark characters exist in the compiler area
of storage when operating as a tape system.

N ate: The monitor exists in storage throughout compilation.
When a phase has completed its function, it transfers con
trol back to the monitor.

Loader Phase (02)

1. Stores the information of the control card (PARAM).

2. Checks that the storage size indicated on the con
trol card does not exceed the machine storage ca
pacity, unless T is punched in column 15.

3. Stores the source program beginning at the address
indicated on the control card. The source program
is stored backwards to exploit the 1401 machine
instructions that cause address registers to decre
ment during the scanning of the source program.
Appended on the right of each statement is the
statement number (if any), a one-character position
which will become the statement-type code, and
three positions for the internal sequence number.

4. Eliminates all non-significant blanks from the input
statement while storing it. Blanks are retained only
in the H-conversion part of FORMAT statements.

5. Checks that there are not more than nine continu
ation cards.

6. Checks for input statement characters (11-3-8
punch) or (4-8 punch), except in the H-conversion
part of FORMAT statements. The former, if present,
is changed to *(11-4-8 punch), the latter to -(11
punch). A record mark is treated as an end-of-card
character.

7. Each statement is bounded by group-mark word
marks. The appendage is separated from the main
body of the statement by a 5-8 punch character.

8. A STOP is generated as the last statement.

Scanner Phase (03)

1. Determines the statement type and inserts the code
in the appendage of each statement.

2. Supplies a sequence number to each statement.

Sort Phase One (04)

Determines if there is enough free storage remaining
to expand each statement by three characters. If not,
the compilation ends. A message is printed indicating
that the object program is too large.

Sort Phase Two (05)

Statements of the same type are chained. Each state
ment expands by three characters to contain the ad
dress of the next statement of the same type.

Sort Phase Three (06)

The source program is sorted by statement type. At
the end of the sort, the source program has been
shifted to the leftmost part of available storage.

Insert Group-Mark Phase (07)

The 5-8-punch which separates the main body of the
statement from its appendage is replaced by a group
mark word-mark.

Squeeze Phase (08)

1. The words which defined the type of statement are
eliminated, shrinking the source program. For ex
ample, the word dimension in DIMENSION statements
is squeezed out.

2. Statements that do not begin with legal statement
defining words are noted on the printer and are
eliminated from the source program.

Dimension Phase One (09)

A table of arrays is generated at the end of storage.
Each table element consists of the array name, its di
mensions and sufficient space for control statements
and data generated by the equivalence phases and by
DIMENSION Phase Two.

Equivalence Phase One (10)

1. Assures all arrays present in EQUIVALENCE state
ments are defined.

2. Adds simple variables present in EQUIVALENCE

statements to the table of arrays generated by the
previous phase. These variables are treated, in ef
fect, as one-element arrays.

Equivalence Phase Two (11)

The dimension table is altered to show the relation
ship between arrays. The procedure, essentially, is to
make every array whose first element is equivalent to
a secondary element of another array know the dis
tance to the first element of the latter array.

Dimension Phase Two (12)

Arrays are assigned their object-time addresses.

Variables Phase One (13)

The source program is scanned for variables. Simple
variables are merely tagged for later processing by
Variables Phase Four. Subscripted variables whose

27

subscripts are constants are replaced by the object
time address of the array element. Subscripted vari
ables whose subscripts are variable are replaced by
the computation required at object time to determine
the array element selected. Non-subscripted array
variables appearing in lists are replaced by two ma
chine-language addresses representing the limits of
the array. Non-subscripted array variables appearing
elsewhere are replaced by the address of the first ele
ment of the array.

Variables Phase Two (14)

The entire source program is shifted to the top (left
most part) of available storage, leaving room for sub
sequent compiler phases. The remaining storage is
cleared for tables including the array table generated
by Dimension Phase Two.

Variables Phase Three (15)

This phase does housekeeping for Variables Phase
Four.

Variables Phase Four (16)

The compiler first scans input-output lists and the
left side of equal signs for simple variables. Each
unique variable is placed in a table with its object
time address. In the second scan of this phase, all vari
abIes are matched against the table. When an entry is
found, the object-time address is substituted in the
statement for the variable name. Variable names not
present in the table are undefined.

Variables Phase Five (17)

A check is made for unreferenced variables.

Constants Phase One (18)

Constants in the source program are noted and nor
malized and/or truncated.

Constants Phase Two (19)

Same as Variables Phase Two. The table of simple
variables is destroyed.

Constants Phase Three (20)

Constants are placed in their object-time locations at
the lower end of storage. The object-time addresses
replace the constants wherever they appear.

Subscripts Phase (21)

Subscripts which must be computed at object time
are reduced to the required parameters.

28 Fortran: 1401 Specs. and Gp. Proc.

Statement Numbers Phase One (22)

All statement numbers that appear in the source pro
gram are reduced to a unique three-character repre
sentation. Statement numbers within the statement
are moved to the beginning of each source-program
statement (rightmost end of statement in storage) that
contains these elements.

Tamrof Phase One (23)

FORMAT statements are checked to insure that they
are referenced by input-output statements.

Tamrof Phase Two (24)

The object-time format strings are developed and
stored immediately preceding the constants at the
lower (rightmost) end of storage.

Lists Phase One (25)

Duplicate lists are checked and eliminated to optimize
storage at object time.

Lists Phase Two (26)

The object-time list strings are developed and stored
immediately to the left of the format strings at the
lower end of storage.

Lists Phase Three (27)

Each input-output statement is reduced to the ad
dress of the list string (when present); the format
string (when present); and the tape unit number
(where applicable).

Statement Numbers Phase Two (28)

Same as Variables Phase Two.

Statement Numbers Phase Three (29)

The three-character equivalents of statement numbers
appearing within statements (generated by Statement
Numbers Phase One) are placed in a table.

Statement Numbers Phase Four (30)

The three-character equivalents of statement numbers
which identify statements is matched against the state
ment number table. When the equivalent is found, the
sequence number generated by the compiler for that
statement is substituted in the table. Unreferenced
and multi-defined statement numbers are checked.

Statement Numbers Phase Five (31)

Undefined statement numbers are noted.

Input / Output Phase One (32)

The linkage to the object format routine from the
input-output statements is generated in-line.

Arith Phase One (33)

This is a housekeeping phase. The unary minus (negate)
and exponentiation operators are changed to unique
one-character symbols. Error checking also takes
place.

Arith Phase Two (34)

All arithmetic and IF statements are unnested using
a forcing table technique. Error checking continues.

Arith Phase Three (35)

Initialization for Arith Phase Four takes place.

Arith Phase Four (36)

Strings generated by Arith Phase Two are optimized
to reduce the number of temporary storage areas for
each statement.

Arith Phase Five (37)

IF statement exits and strings for exponentiation are
created.

Arith Phase Six (38)

Optimization of temporary storage areas takes place.
These areas are assigned definite locations in storage.

Input/Output Phase Two (39)

In-line instructions are generated for executing END

FILE, REWIND and BACKSPACE statements.

Computed Go To Phase (40)

Statements with two to ten exits generate in-line in
structions.

Go To Phase (41)

An unconditional BRANCH instruction is generated
in-line in place of the original statement.

Stop/Pause Phase (42)

The proper instructions to

1. HALT

2. halt, continue, and display the number indicated
are generated in-line.

Sense Light Phase (43)

In-line instructions are generated.

If (Hardware) Phase (44)

In-line instructions are generated for IF (SENSE SWITCH

i) and IF (SENSE LIGHT i).

Continue Phase (45)

No object-time instructions are generated for these
statements. This phase passes information required by
the Resort phases of the compiler.

DO Phase (46)

Strings of unconditional BRANCH instructions and pa
rameters are generated in-line. An unconditional
BRANCH is generated to follow the last statement within
the range of the DO.

Resort Phase 1 (47)

An area is made available for a table to assist in re
sorting the statements into their original order.

Resort Phase 2 (48)

The resort table is filled with the current location of
each statement.

Resort Phase 3 (49)

The source program is resorted back to its original
order. The statement number table is altered to show
the current address of each statement.

Resort Phase 4 (50A)

The statements are relocated to the positions they will
occupy at object time. The statement number table is
adjusted to show the object time locations of the
statements.

Shift Constants, Formats, and Lists (SOB)

Constants, formats, and list strings are moved into
their object core-storage locations above array stor
age. Array storage-area is cleared.

Replace Phase One (51)

Object-time instructions which reference statement
numbers are corrected to the object-time addresses of
the statement. Subscripts strings are cleaned up.

Load Phase (52) - Sections Band C (52A)

As the object coding may originate at 1697, the coding
for phase 52 must be split into two parts, the first of
which replaces the snapshot coding in positions 333-
680. This phase loads the two sections.

29

Function/Subroutine Loader Phase (528 and 52C)

Relocatable function routines and subroutines are
loaded. A table of the starting addresses of these rou
tines is created.

Relocatable Package (53)

The relocatable routines loaded in 52B and 52C con
stitute phase 53A of the compiler.

Reloading Snapshot (53R)

The snapshot coding which was replaced by 52B is
retained. If a snapshot is requested for phases 52 and
53, it is taken at this point.

Snapshot (53S)

Same as snapshot in phase 00.

Format Package Loader Phase (54A)

This phase selects the proper I/O routine and loads
it into its object core-storage location.

Obiect Time Limited I/O Format (548)

This is the limited I/O routine loaded by 54A.

Obiect Time Format (54C)

This is the regular I/O routine.

Obiect Time A Format (540)

This is the A-format routine.

Replace Phase 2 (55)

Addresses of the fixed- and floating-word work-areas
are inserted into the generated object program. In
structions which branch to the relocatable routines
are corrected to show the object core-storage addresses
of these routines. Unused core storage is cleared.

Snapshot Phase (56)

A snapshot of the generated program is printed if
requested (if there were no source program errors
which would make program execution unrewarding).

Condensed Deck Phase One (57)

When requested (if there are no input errors), the
compiler will punch a self-loading card deck. The
deck is listed on the printer if sense switch B is on.
This phase punches only the clear-storage and boot
strap cards.

30 Fortran: 1401 Specs. and Op. Proc.

Condensed Deck Phase Two (58)

This phase punches the cards that will initialize the
index registers and sense lights, the snapshot or the
linkage routine, the arithmetic routine, and certain
fixed addresses and constants.

Copy of Snapshot Routine (59A)

This is the object-time snapshot coding loaded by 58.

Fixed XLiNK Routine (598)

This is the object-time linkage routine.

Arithmetic Operations (59C)

This is the object-time arithmetic routine.

Condensed Deck Phase Three (60)

This phase punches the generated instructions, the
constants, lists and format strings, and the i format
routine.

Geaux Phase One (61)

This phase prints the end of compilation message,
initializes the sense lights, and prepares the branch
into the object program coding.

Geaux Phase Two (62)

The arithmetic routine is loaded. Communication is
established between that routine and the generated
coding. The index registers are initialized.

Arithmetic Package (63)

This phase is comprised of the arithmetic routine
which is loaded by Geaux' Phase Two.

Arithmetic Operations
The fixed- and floating-point arithmetic operations
necessary for the execution of the compiled program
are performed by an arithmetic routine which always
appears in every compiled Fortran program. It con
tains a monitor routine which interprets the string
of operand addresses and codes for operations which
is compiled as a part of the procedure for every arith
metic expression in the source program. It also contains
the various subroutines to accomplish the basic opera
tions of add, subtract, multiply, and divide for both
fixed-point and floating-point numbers, and a routine
to normalize floating-point results.

In addition, the monitor routine will, when a func
tion code in the string is encountered, initiate a trans
fer of control to one of the various function routines.
These are referred to collectively as the relocatable
functions, and are individually and selectively loaded
by the compiler as required.

The arithmetic routine will also transfer control to
a subscript routine, which will calculate the proper
operand address when the string indicates the presence
in the expression of a subscripted variable in which
at least one of the subscripts includes a variable.

Arithmetic Routine

Any expression compiled in the procedure involves
one or more groups of serial simple arithmetic or
function evaluation operations, each terminated by a
store of the result at a location specified in the string.

The result of a single arithmetic or function evalu
ation operation (within a group) is stored in a working
accumulator (see below). If the result is the terminal
value of a group of operations, it will then be moved
to a temporary storage area, whose address, together
with the "store" operator code appears in its string,
associated with that group. If the result in the work
ing accumulator is the terminal value of the entire
expression (i. e., terminal value of the final group in
the expression) it will then be moved to the final
storage location, also obtained from the compiled
string. This location is the address assigned to the
variable on the left of the equal sign in an arithmetic
statement, and is an available temporary area if the
expression appeared in an IF statement.

The working accumulator is used to store the partial
result during the course of a group of operations. This
location and other work areas necessary to arithmetic
operations occupy the arithmetic work area, core stor
age positions 200-332. The working mantissa precision
during a floating-point expression evaluation is f + 2
positions, providing 2 extra positions beyond the
floating-point precision specified. This provision serves
to improve the accuracy of the calculated value of the
expression. For fixed-point calculations the working
precision is k positions.

The working-accumulator mantissa is thus f + 2
positions in length (floating point), or k positions
(fixed point), having its leftmost digit at symbolic
address ACCHI + 1. Its characteristic (floating point
only) is stored in a three-character location whose
rightmost position has the symbolic name EXP.

The size and format of the temporary storage loca
tions are the same as those of source program vari
ables, except that the mantissa is f + 2, (not f) digits
long. The two digits of the characteristic make the
total length f + 4 positions. Temporary storage areas
for fixed point values are k digits long.

During the calculation of an expression, all partial
results are truncated to the f + 2 digits available in
the working accumulator and in the temporary stor
age. The final value of the expression, however, is

rounded in the f + 1 position before it is stored
to f digits of precision in final storage. Also, any output
value is rounded one position to the right of the last
position output. In fixed point, all results and output
quantities are taken as the integral part of the true
result, modulo 10k •

The floating-point add, subtract, multiply and divide
subroutines are designed to handle one operand (the
working accumulator) of f + 2 digits of precision, and
one operand of f + 2 or fewer digits of precision. The
latter operand may be either a variable (f digits), a
temporary location (f + 2 digits), or a source program
constant. Such constants are stored by the compiler
only to the precision to which they are written in the
source program statement, up to the precision given
on the control card.

The analogous fixed-point routines handle one oper
and (the working accumulator) of k digits of precision,
and one operand of k digits or less, again allowing
for the possible smaller precision of source program
constants.

The basic subroutines in the arithmetic routine are
tabulated as follows:

Symbolic
Name

ARITF

FSIZE

None

FMPY

FDIV

NMLZI

XSIZE

None

XMPY

XDIV

STR99

STRZE

DVERR

QFUNCT
ERMSG

CLRWK

Purpose

Entry point from procedure; monitor and interpret
string

Initialize for a floating-point calculation

Floating-point add/subtract

Floating-point multiply

Floating-point divide

Normalize floating-point result of a single arithmetic
operation; place the normalized result in the work
ing accumulator. If exponent overflow is detected,
go to ERMSG to print message (NOF); then go to
STR99. If exponent underflow is detected, go to
STRZE.

Initialize for a fixed-point calculation.

Fixed-point add/subtract

Fixed-point multiply

Fixed-point divide.

Exponent overflow; set result magnitude equal to
largest value possible in floating-point notation; set
result sign as appropriate. Go to CLRWK.

Exponent underflow, or result equals zero; set
floating-point result equal to zero. Go to CLRWK.

Division by zero; go to ERMSG to print message
(DZE); then go to STR99.
Linkage to relocatable function transfer control.
Print appropriate error messages, which includes
a mnemonic three-character code and the display
address in the generated procedure of the source
program statement being executed. This subroutine
is used to record certain circumstances, occurring
during arithmetic operations, which may affect the
calculations adversely.
Clear the work a"rea after an individual arithmetic
operation. Return to monitor.

31

Accuracy

In what follows, the terms absolute error and 1'elative
error will be used, and are defined as follows:

The absolute error in the calculation of a function
g(x, y) of two arguments x and y (e. g., for addition,
g (x, y) = x + y) is equal to: calculated g (x, y) -exact
g (x, y).

The relative error is equal to: (calculated g (x, y)
exact g (x, y)) -;-- exact g (x, y).

Add/Subtract. When two numbers of like sign are
added, or unlike sign subtracted, the absolute value
of the relative error in the result is less than 10 -(f + I).

When two numbers of unlike sign are added, or like
sign subtracted, the absolute value of the absolute
error in the result is less than 10 -(f + 2) + C, where c is
the larger of the characteristics of the two numbers.
The relative error can be as high as 10.

Multiply. The absolute value of the relative error
in the product is less than 10 -(f + I).

Divide. The absolute value of the relative error in
the quotient is less than 10 -(f + I).

The error limits above do not apply if exponent
overflow or underflow occurs. This will be detected
during normalization of the result. For overflow, con
trol is transferred to ERMSG, where the code NOF
and the statement address are printed, and then to
STR99. For underflow, control is transferred to STRZE.

Relocatable Function (Library) Routines

A number of relocatable routines designed to find a
specific function of an argument yare included in
the Fortran system deck, and are selected by the
compiler for inclusion in the object program in ac
cordance with the need for each evidenced by the
source program. Some of these routines may be expli
citly invoked by the programmer through the use of the
function name assigned to the routine. Some are im
plicitly invoked by the programmer through the use
of certain types of arithmetic expressions; for instance,
a sub-expression of the form A * *B requires both the
exponential routine and the logarithm routine for
evaluation. Figure 5 tabulates each of these functions,
and exhibits the function name available to the pro
grammer (if any). Also shown are the arithmetic mean
ing of the function, the correct mode of the argument
and the mode of the calculated function (for those
functions which are named) and the operator code,
used in the generated procedure string, which at object
time indicates to the arithmetic routine that control
is to be transferred to that particular function routine.

32 Fortran: 1401 Specs. and Op. Proc.

Computation Method

The functions square root, exponential, sine, cosine, arc
tangent and natural logarithm are computed during
evaluation of an arithmetic expression wherever codes
for those operations are encountered in the compiled
string of addresses and operators corresponding to the
source program expression. Control is passed to the
proper function evaluation routine with the mantissa
and exponent of the floating-point argument in fixed
locations. Return from the function routine to the
arithmetic routine occurs in various ways, for instance:

1. control is returned to NMLZ1 for normalization of
the function value.

2. the value of the argument is found to be such that
the result is known, for instance:

a. cos(x) = 1 if x = 0; control is returned to the
routine which will store + 1 as the result.

b. exp(x) is greater than or equal to lO!H); control is
returned to the exponent overflow routine, etc.

The square-root function is computed by the odd
integer method. The result is calculated from left to
right beginning with the most significant digit of the
argument.

The basic computation for the exponential, sine,
cosine, arc tangent and natural logarithm functions is
an evaluation of the appropriate power series, in
which the last term used depends upon the precision
to which floating-pOint arithmetic is to be done. The
same series evaluation routine is used for all of the
functions, although it is used to compute a slightly
different series for arc tangent and logarithm than for
the other three functions. The routine is initialized by

Mode of Procedure
Function Meaning Name Argument Function Code

Exponential exp(y) EXPF Floating Floating E
Sine sin(y) SINF Floating Floating S
Cosine cos(y) COSF Floating Floating C
Arctangent tan -I(y) ATANF Floating Floating T
Natural In(y) LOGF Floating Floating G
logarithm
Float Float a FLOATF Fixed Floating F

fixed
number

Fix Fix a XFIXF Floating Fixed X
Hoat
number

Absolute Absolute ABSF Floating Floating A
value value of y

Absolute Absolute XABSF Fixed Fixed A
value value of y

Negate -y N
Square root VY SQRTF Floating Floating Q

Figure 5. IBM 1401 Fortran Functions

the function main line routine to give the proper result.
Figure 6 exhibits the series used and shows the in
itialization quantities necessary to produce the dif
ferent functions.

The power series routine is written to accept argu
ments of the form:

x . 10-r

where r ;;;: 0, and the magnitude of X is such that
neither the series (partial sum or final sum) nor any
of its terms equals or exceeds 10.

Function of Argument = S(arg)

For EXP, SIN, COS:

S(arg) = I 10 -ai T I
1=0

Where: arg = X· 10-r

For LOG:

S(arg) = 2
1=0

10 -ai TI
DI

Where: arg = X
T I = h(X) T I - 1 T 1 = h(X) T i - 1

DI
Dl = DI -1 + Ci Di = DI-1 + CI
CI = C 1 -1 + B Ci = CI-1 + B

Initialization: EXP SIN COS LOG

To 1 X 1 (X-I)
X+I

a r 2r 2r 0

h(X) X _X2 _X2
(X-IY
X+I

Do 0 0 0 1

Co 1 -2 -6 2

B 0 8 8 0

Thus,

for EXP: S(arg) = 1 + X ·IO-r + X2 .1O-2r + ...
2!

= exp(arg)

for SIN: S(arg) = X - K3 ·10 -2r + X5.IO -4r - ...
3! 5!

= lOr sin(arg)

for COS: S(arg) = 1 - X2.1O -2r + X4 . 10 -4r - ...
2! 4!

= cos(arg)

for ATAN: S(arg) = X - X3 + X5 - ...
3 5

= c ± tan -I (arg)

ATAN

X

2r
_X2

1

2

0

for LOG: S(arg) =Ix. - 1\+ 1 . (X - 1)3 + I(X - 1)5 + ...
\X+1) 3 X+I 5X+I

= Ilog(arg) + r.ln 10
:2

Figure 6. Function Evaluation

To meet these conditions, a quantity for which the sine,
cosine, or exponential function is to be found may
require a reduction in magnitude. This is accom
plished by the main line routines for the functions,
and has the following mathematical basis:

For exponential: exp (y) = IOq exp(x)

where: y = q In 10 + x q integral; 1 x 1 < In 10

For sine: if y = n '!I + x n integral; 1 xl < '!I ,
2 2

then: sin(y) = sin(x)
sin (y) = cos (x)
sin (y) = - sin (x)
sin (y) = - cos(x)

For cosine: if y = n '!I + x
2

then: cos(y) = cos (x)
cos(y) = - sin (x)
cos(y) = - cos(x)
cos(y) = sin(x)

For arc tangent:

n = 0,4,8 .. .
n = 1,5,9 .. .
n = 2, 6,10 .. .
n = 3, 7,11 .. .

n integral; 1 x 1 < :!!.
2

n = 0, 4,8 .. .
n = 1,5,9 .. .
n = 2, 6,10 .. .
n = 3, 7,11 .. .

if y < 0, tan -I (y) = - tan -I (I y I)

if y ~ 1, tan -I (y) = ~ - tan -I (f)

then if 0 < y < ·42, tan -I (y) = S(arg), where X = y

if ·42 < y ~ 1, tan -I (y) = - S(arg),

where X =(1 - y)
1 + y

the result will be such tp.at: I tan -I (y) I < .!!
2

The necessary reductions are thus accomplished when
necessary by a division routine so programmed as to
obtain an integral quotient and remainder. For ex
ponential, the divisor is In 10; for sine or cosine it
• 7r IS _ •

2
For logarithm:

if y = x . 10e .31 < x < 3.1 ; e integral
then

In(y) = e.ln 10 + In x

Both the series evaluation (CALC) and the division
routine (DIVID) are closed subroutines contained in
a relocatable program called FORTRAN FUNCTION
COMMON DECK. It is made a part of the compiled
program only if one or more of the four functions
(exponential, sine/ cosine, arc tangent and logarithm)
is included in the compiled program.

The task of determining the magnitude of the argu
ment of the function and of using the COMMON rou
tines (if necessary to obtain the function value) is left

33

to the individual function main line routines. There
are four such routines, since sine and cosine are evalu
ated by using two diHerent entry points to the same
routine. When the routines are entered, the mantissa
of the argument y is located in the working accumula
tor whose leftmost position has the symbolic name
ACCHI + 1 and whose length is f + 2 positions. The
characteristic of the argument is located in a three
character location whose rightmost position has the
symbolic name EXP.

Accuracy

In what follows, the terms absolute error and relative
error will be used and are defined as follows:

The absolute error in the calculation of a function
g(y) of an argument y is equal to: calculated g(y)
-exact g(y).

The relative error is equal to: (calculated g(y) -
exact g(y)) -;- exact g(y).

The error specifications refer to the normalized
function value stored in the working accumulator.

Exponential Function. For 0 .::; I y I < In 10, the ab
solute value of the relative error in exp(y) is less than
2X10-(f+l).

For In 10 L Y < 99·1n 10, and for - 100.ln 10 L

Y < - In 10, the absolute value of the relative error
in exp(y) is less than:

(q + 2) . 10 -(f + I)

where q is the integral quotient obtained when y is
divided by In 10.

For y < -100·ln 10, exp(y) < 10 -100. Thus, the
value of the function is too small to be stored in Hoat
ing-point notation, a circumstance which is known as
exponent underHow. In this case, the value of the
function is set equal to zero and the program proceeds
to the next calculation.

For y ~ 99·ln 10, exp(y) 2: 1099 • The value of the
function is too large to be stored and the exponent
overflow routine is invoked. One of two error messages
is printed, either NOF (normalize overflow) or EOF
(exponential overflow), since the condition will be de
tected in either the normalization routine (if y < 100
In 10) or the main line exponential routine (if y ..2: 100·ln
10). In either case, the display address of the state
ment being executed is also printed, the result man
tissa is set equal to a field of nines (positive), the result
characteristic is set to +99, and the program proceeds
to the next calculation.

Sine Function. For 0 Sly I ~ !!:' the absolute value
2

of the relative error in sin(y) is less than 2 . 10 -f.

34 Fortran: 1401 Specs. and Op. Proc.

For angles whose absolute values lie in quadrants
other than the first, the absolute value of the absolute
error in sin(y) is less than:

(q + 2) . 10 -(f + I)

where q is the integral number of quadrants in the
angle (obtained by taking the integral part of the
product y . ~). The upper bound on the relative

7T'

error in these quadrants is equal to this quantity di
vided by sin(y), and can be very large when I y I is
close to n 7T'., n = 1, 2, 3, ...

For I y I > 10f, no attempt is made to calculate the
sine. The error message SCL (sine-cosine large) is
printed together with the display address of the state
ment being executed, the function is set equal to zero,
and the program proceeds to the next calculation.

Cosine Function. For 0 L I y I < 1, the absolute
value of the relative error in cos(y) is less than
4 . 10 -(f + I).

For 1 ~ I y I < '!! - .04 = 1.53, the absolute value
2

of the relative error in cos(y) is less than 5 . 10 -f.

For 1.53 .::; I y I < 7T' , the absolute value of the ab-
2

solute error in cos(y) is less than 2 . 10 -(f + \), and
for angles in quadrants other than the first, the upper
limit of this absolute error is:

(q + 2) . 10 -(f + I)

where q is defined as for the sine routine. The upper
bound on the relative error in these quadrants, and
near JI in the first quadrant, is equal to this quantity

2
divided bycos(y), and can be very large when I y I is
close to (2n - 1) . ~,n = 1, 2, 3, ...

2

For I y I > 10f no attempt is made to calculate the
cosine. The error message and procedure (set function
equal to zero) is the same as the procedure for the
analagous circumstance in the sine routine.

Arc Tangent Function. For arguments less than
10 - (f t 3) in absolute value, the absolute value of

the relative error is less than 10 -(f + I).

For arguments less than .42 in absolute value, the
absolute value of the absolute error is less than .5·
10 -(f + I).

For arguments greater than .42 in absolute value,
the absolute value of the absolute error is less than
3.0 . 10 -(f + I).

For arguments greater than 10 (f t 3) in absolute

value, the absolute value of the absolute error is less
than 10 -(f + I).

Logarithm Function. For 0 < y < 0.5 and for 2
< y, the absolute value of the relative error in In(y)
is less than 3.5 . 10 -f.

For 0.5 < Y < 0.95 and for 1.05 < Y < 2, the ab
solute value of the relative error in In (y) is less than
18· IO-f.

For 0.95 < y < 1.05, the absolute value of the
absolute error in In(y) is less than 0.5 . 10 -f. The upper
bound on the relative error in this range is equal to
this quantity divided by In(y), and can get very large
as y approaches 1.

If y-O, the error message LNZ is printed together
with the display address of the statement being exe
cuted, the function is set equal to the largest negative
number in the floating-point range, and the program
proceeds to the next calculation.

If y < 0, the error message is LNN and the function
calculated is In , y ,.

Square Root Function. For ° ~ y < 1099 , the ab
solute value of the relative error in SQRT (y) is less
than 10 -(f + I).

If y is negative, the error message SQN is printed
along with the display address of the statement being
executed. The square root of the absolute value of y
is calculated, and the program proceeds.

Input I Output Operations

Input/ output operations necessary to the execution of
the compiled program are performed by the FORMAT

routine.

Format Routine

For each Input-Output statement, an entry to the
Format Routine is compiled. Following this appears:

l. a code indicating the appropriate I/O device;
2. the address of the series of instructions (format

string) which determines the arrangement of the
data (compiled from the referenced format state
ment); and

3. the address of the specified list of data (list string).

The format string consists of:

l. branches to appropriate closed subroutines of the
Format Routine,

2. parameters describing the data which are needed
by these subroutines,

3. the data itself (H -conversion fields), and
4. certain register-updating instructions.

When an item of numerical data is called for by the
format statement, (GETAD), control temporarily
transfers to a list routine, OBLIST (a relocatable and
selectively loaded object time subroutine), which sup
plies the address required by processing the list string.
The data is then converted to the appropriate internal
(INEFI) or external (EFNTN, INOTN) notation by a
Format Routine subroutine.

The H -conversion subroutine (HOLLR) is divided
into two sections. On output, H-conversion transfers
alphameric information from the format specification
to the output area. On input, H-conversion (HOLIN)
transfers alphameric data from the input area to the
proper location in the format specification.

Logic Flow

1. Initialization: Work areas and index registers are
initialized. Counters and switches are reset.

2. Select I/O routine: Test the code indicating the
appropriate I/O device and branch to the corre
sponding subroutine. (Read a card, punch, print,
read input tape, write output tape, write tape, read
tape.)

3. I/O Routines: The input I/O routines bring in the
data and place it in the work area. Control is then
transferred to the format specification and the return
address is saved. The output routines clear the out
put area, branch to the format specification and
save the return address.

4. Control: Processing is now under control of the
format string. This series of instructions branches
to appropriate closed subroutines in the Format
Routine. The subroutines necessary to process For
mat specifications are:

a. OPNPR: l. A branch to OPNPR occurs for
each left parenthesis.

2. The OPNPR routine sets up a
counter indicating number of times
this set of parentheses should be
executed. (This number was found
as a parameter in the format speci
fication).

3. Sets the address of the first exe
cutable item following the open
parenthesis.

b. CLSPR: 1. A branch to CLSPR occurs for each
right parenthesis except the last.

2. Adjusts counter set up in OPNPR
and determines whether it has been
satisfied. If not, control returns to
last open parenthesis. If satisfied,
control proceeds to next executable
instruction in format string.

35

c. EOJ1: (The rightmost close parenthesis is
translated as a branch to EOJ1)

1. For output, data is transferred (via
NDLIN) to the I/O unit previously
specified. If the list has not been
exhausted, control is sent back to
the last open parenthesis and its
coefficient; otherwise, control is re
turned to the generated in-line pro
cedure.

2. For input, the list is checked first.
If the list is exhausted, an exit from
the format routine to the procedure
occurs. Otherwise, control is trans
ferred to the I/O subroutine, more
data is read into the work area, and
control returns to the last open
parenthesis.

d. NDLIN: 1. A branch to NDLIN occurs upon
encountering a slash (I) in the for
ma t specification.

2. Resets address of I/O work area to
left end position (thereby spacing
a line).

3. Branches to I/O subroutine and
either puts out or brings in data.

e. SCALE: 1. A branch to SCALE occurs when
the format specification indicates a
scale factor.

2. The SCALE subroutine saves the
scaling factor for subsequent proc
essing of E- and F -conversion data.

f. GETW: 1. A branch to GETW occurs for each
E, F, or I specification in the for
mat statement.

2. Transfers control temporarily to
OBLIST for the purpose of obtain
ing the address of the data to be
processed;

3. Upon return, transfers control to
INEFI, for input data.

g. INOTN: Processes I-conversion data for out
put statements, including when
necessary, the insertion of a lead
ing minus sign, space permitting.

h. EFOUT: 1. Processes E- and F-conversion out
put data.

2. Adjusts characteristic of internal
data for scaling.

3. Moves data to output area, inserts
sign if necessary, positions decimal

36 Fortran: 1401 Specs. and Op. Froc.

point and adds E nn as last 4 posi
tions of data for E-type conversion.

i. INEFI: 1. Determines from the format speci
fication the location of rightmost
character of E, F, or I input data
within the work area.

j. INI:

2. Scans for first significant digit of
data.

3. Branches to INI for I -conversion
input data.

4. E and F Input data are converted
to internal notation and the char
acteristic adjusted as required by
a scaling factor and/ or decimal
point position.

5. Transfers converted data to storage
as specified by the LIST address.

1. Processes I -conversion input data.

2. Converts data to internal notation.

3. Transfers converted data to storage
as specified by the list address.

Performance Data

The time, required to process a 1401 Fortran program
is determined by the following factors:

1. Overhead. This involves the time necessary to read
and pass through the phases of the compiler. The
time required:

a. for a card system: 2 minutes 56 seconds

b. for a tape system: 16 seconds.

(The time difference is because the compiler can
be read faster from tape.)

2. Input/Output Operations. This involves the need
to read the source-program deck, print a core
storage snapshot (dump), and punch the condensed
deck.

3. Resorting. This involves the time needed to re
order the statements into their final core-storage
locations after processing is completed. This time
is the most significant part of compilation time,
particularly when:

a. there are a large number of different types of
statements, and

b. core storage is completely filled.

4. Number of Input Characters (size of the source
program). Compilation time varies directly with
the number of input characters.

Minimum and Maximum Compilation Time

The time required to compile a 1401 Fortran program
varies from:

1. 16 seconds to 15 minutes for a tape system (i.e.,
where the compiler is on tape), and

2. 2 minutes 56 seconds to 17 minutes 45 seconds for a
card system i.e., where the compiler is read from
cards. (The difference is that information can be
read faster from tape than from cards.)

The minimum program in this case consists of a
single control statement. The suggested maximum
program is one that:

1. involves the use of every type of Fortran statement.

2. fills core storage (16000 positions in this case). This
would require 400 statements, assuming an average
length of 25 characters per statement.

Examples

The following three cases are presented as examples:

Number of Compilation Core-Stora'ge
Case Input Statements Time Positions Used

1 42 52 sees. 7,996
2 25 1 min. 50 sees. 7,352
3 424 10 min. 35 sees. 15,856

Case 1 (see Figure 8) is a matrix calculation. Case 2
(see Figure 9) illustrates a use of the library functions.
Case 3 calculates characteristics of sort programs.

Input/ output operations and sorting and resorting
of statements require the most significant part of com
pilation time. For example, input/output operations
required approximately:

1. 32 seconds in Case 1 (includes snapshot).

2. 1 minute 26 seconds in Case 2 (includes snapshot
and condensed deck).

3. 4 minutes 35 seconds in Case 3.

In Case 3, more than half of the remaining 6 minutes
was used to sort and resort.

37

Fortran Operating Procedures -IBM 1401

This section contains the information necessary to
compile and execute an object program from a source
program written in 1401 Fortran. Included also are
the diagnostics, halts, and messages that may be en
countered when compiling and executing the object
program.

Compiling Operation Procedures

Library Tape

The 1401 Fortran system on tape, consists of a self
loading program, blocked printer records, and bloc~ed
condensed card records. You may retrieve the data
from the tape through the following procedure:

1. Ready the tape on Tape Unit 1.

2. Set the I/O check stop switch up.

3. Reset the system.

4. Press Tape Load. A program halt will occur at 364.

5. a. If the symbolic listing is desired, press Start. At
the end of the listing a program halt will occur
at 600. If condensed cards are then desired, press
Start. Otherwise, press Start Reset, then Start to
rewind the tape.

b. If only condensed cards are desired, press Start
Reset, then Start. The tape will be searched past
the symbolic listing records and then commence
punching. After punching is completed, an auto
matic tape rewind occurs.

The cards which are produced by this operation con
stitute the 1401 Fortran Compiler Deck, Utility Deck
3, Utility Deck 2, the two sample problems, and Utility
Deck 1 (the compiler tape generator). The decks may
then be used as described below.

Compiler Deck Description

The decks comprising the 1401 Fortran system are
identified as such by 50 in columns 76 and 77. The
version number is punched in column 80. Phase num
bers punched in columns 78 and 79 identify the func
tional segments of the system. From an operational
point of view, it is only necessary to locate the follow
ing phase boundaries in the deck:

1. The end of phase 02, the loader.

38 Fortran: 1401 Specs. and Gp. Proc.

2. The beginning of phase 95, Utility Deck 3, the
library tape generator.

3. The beginning of phase 96 (optional, on request),
Utility Deck 2, the relocatable condensor deck.

4. The beginning of phase 97, sample problem 1
(matrix arithmetic).

5. The beginning of phase 98, sample problem 2 (trigo
nometric, logarithmic, exponential, and square root
functions) .

6. The beginning of phase 99, Utility Deck 1, the com-
piler tape generator.

Phases 00-63 are continuously numbered (with gaps be
tween some phases) in columns 72-75 and constitute
the compiler deck. Set the rest aside. Phases 95-99 are
each continuously numbered in columns 74-75.

Addition of Arbitrary Relocatable Library Functions

This section describes the procedures to follow in:

1. assembling the user's 1401 Autocoder function rou
tines

2. including the additional function names in the 1401
Fortran function table, and

3. including the user's assembled function routine in
the 1401 Fortran compiler. See User Functions.

Assembling the User's Function Routines

The user's function routines are assembled using the
1401 Autocoder (on tape) processor and procedures.
No condensed output need be specified in the control
card. If there are no errors:

1. Place the 1401 Fortran Utility Deck 2 (phase 96) in
the 1402 card-read hopper.

2. Press the 1402 load key.

3. Press the start key when the reader stops at the last
card.

A condensed deck without clear-storage and boot
strap cards will be produced from the data on the
Autocoder tape. This condensed deck will be suitably
zoned so that it can be relocated and loaded when it
is named in the source program.

Incorporating the User's Function into 1401 Fortran

To incorporate the new function into the 1401 Fortran
system, the user must:

1. add the name of the function to the table of valid
library functions, and

2. insert the relocatable condensed deck into the sys
tem deck.

To add the function name:

1. consult the 1401 Fortran listing, Phase 33 (Arith
Phase One), under the comment card TABLE OF
FORTRAN FUNCTIONS.

2. commencing at the statement bearing the remark
"USER FUNCTIONS", note the column of codes,
H, D, M, L, K, etc.

3. choose an unassigned code and note its condensed
card number along with the value of n in its com
ment USER FUNCTION n.

4. pull the indicated card from the system deck and
find the first unassigned code punch. It will be pre
ceded by 8 blanks.

5. in this blank field, if the name has 7 characters, a
left parenthesis must be punched, followed by the
characters of the name, IN REVERSE ORDER,
commencing with F.

For a six-character function name, the left paren
thesis is preceded by one blank. A five-character
function name has its left parenthesis preceded by
two blanks. A four-character function name, the
minimum, has three blanks preceding the left paren
thesis.

6. restore the card to the same position in the system
deck.

To insert the condensed, relocatable deck in the sys
tem deck:

1. List phase 53 of the condensed compiler deck to
find the series of cards with the comment USER
FUNCTION n GOES HERE in columns 1-25.

2. Note the condensed card number of the comment
containing the value of n selected in phase 33.

3. Pull that card and the one following from the sys
tem condensed deck and replace them by the con
densed relocatable deck.

4. Generate a new system tape, if desired.

Compiling Procedure

Note: Program segments are assembled as though each were
a separate program.

As a card system:

1. Place source program deck, preceded by an appro
priate control card, between phase 02 and phase 03
of the Fortran compiler deck in the 1402 read
hopper.

2. Set sense switch A up. Set all other sense switches
down.

3. Set sense switch B up, if the condensed deck is to
be listed on printer.

4. Reset the machine.

5. Press Load on the 1402.

6. Press Start when the reader stops at the last card.
When the end-of-compilation message prints (see
Compiler Output) the compiler deck (with inserted
source deck) and the condensed object deck (if any)
will be in the 1402 stackers.

As a tape system to generate the compiler tape:

1. Place phase 99, the compiler tape generator at the
front of the compiler condensed deck in the 1402
read hopper.

2. Ready an unprotected tape on Tape Unit 1.

3. Set sense switch A up. Set all other sense switches
down.

4. Reset the machine.

5. Press Load on the 1402.

6. Press Start when the reader stops at the last card.
The following message will be printed:
1401 FORTRAN COMPILER GENERATED
ON TU1

7. File-protect the compiler tape.

Once the compiler tape is generated, the compiler
deck may be filed.

To run the tape system:

1. Ready the compiler tape on Tape Unit 1.

2. Set sense switch A up. Set all other sense switches
down.

3. Set sense switch B up, if the condensed deck is to
be listed on the printer.

4. Reset the machine.

5. Press Tape Load.

6. Place the source program in the 1402 read hopper,
preceded by appropriate control card.

7. Press Start. Press Start again when reader stops
at the last card. When the end-of-compilation mes
sage prints (see Compiler Output), the compiler
tape will rewind, and the source deck and con
densed object deck (if any) will be in the 1402
stackers.

39

Compiler Output

The following information is obtained, during com
pilation, at the 1403 printer unless otherwise indicated:

1. Machine core-storage size, specified and actual.
2. The source program listing including an internal

sequence (SEQ) number for each statement. SEQ
will be referenced by any error diagnosis at either
compile or execute time. Each page listed will be
identified by the punches in columns 76-80 of the
source program cards and by a page number.

3. The number of input characters.
4. The specified modulus (k), equal to the word size,

for fixed point (integer) variables.
S. The specified mantissa length (f) for floating point

variables. Two extra positions will be reserved for
the characteristic. Word size thus equals f + 2.

6. Array storage assignment, naming each array with
its decimal and machine language boundaries.

7. Simple variable storage assignment, naming each
variable with its decimal and machine language
(right-hand) address.

8. Constant storage assignment boundaries.
9. Diagnostic messages. See Compiler Diagnostics.

10. For each executable statement: the SEQ number,
the object time starting address (machine language
and decimal) of the generated procedure, and a
display code (related to the starting address) which
may be used during diagnosis of execution of the
object program (see next section).

11. If requested on the control card, and if there have
been no errors that would prevent successful exe
cution of the object program, a core storage snap
shot will be printed and a condensed deck in con
densed Autocoder format, will be punched. The
condensed deck listing will be printed if sense
switch B is up.

12. The system will halt after printing the message:
END OF COMPILATION
PRESS START TO GO

At this time data tapes and cards may be loaded
and the system tape unloaded. Initial object-time
sense-switch settings may be made.

Compilation Checking Aid

The core storage snapshot can be forced at various
times during compilation by the use of sense switches.
Switches C, D, and E all up will cause the snapshot to
print after every compiler phase. Because this is usu
ally undesirable, fewer phases can be printed by the
use of switches D and E up. These are: DIMEN2,
V ARBLS, CONST3, LIST3, STNUM5, ARITH6, DO,
RESORT 4.

40 Fortran: 1401 Specs. and Op. Proc.

Sense Switch E up will cause printout DIMEN2,
STNUMS,DO.

G on will cause a halt after any snapshot. F on will
bypass the printout of any snapshot.

Compiler Diagnostics

The following messages will be printed, during com
pilation, when appropriate:

MACHINE SIZE SPECIFIED IS GREATER THAN ACTUAL
MACHINE

SYSTEM DOES NOT FOLLOW END CARD

OBJECT PROGRAM TOO LARGE

NO PARAMETER CARD (Control Card)

ERROR 1 UNDETERMINABLE STATEMENT (SEQ
number)

ERROR 2 DOUBLY DEFINED ARRAY (NAME)
ERROR 3 DIMENSION SYNTAX, STATEMENT (SEQ

number)
ERROR 4 EQUIVALENCE SYNTAX, STATEMENT (SEQ

number)
ERROR 5 ILLEGAL MIXING IN EQUIVALENCE,

STATEMENT (SEQ number)
ERROR 6 UNDEFINED ARRAY, STATEMENT (SEQ

number) (NAME)
ERROR 7 ILLEGAL EQUIVALENCE, STATEMENT

(SEQ number)
ERROR 8 REDUNDANT EQUIVALENCE, STATEMENT

(SEQ number)
ERROR 9 VARIABLE SYNTAX, STATEMENT (SEQ

number)
ERROR 10 UNDEFINED VARIABLE, STATEMENT (SEQ

number)
ERROR 11 UNREFERENCED VARIABLE, STATEMENT

(SEQ number)
ERROR 12 FLOATING POINT SUBSCRIPT, STATEMENT

(SEQ number)
ERROR 13 STATEMENT NUMBER SYNTAX,

STATEMENT (SEQ number)
ERROR 14 UNREFERENCED FORMAT, STATEMENT

(SEQ number)
ERROR 15 FORMAT SYNTAX, STATEMENT (SEQ

number)
ERROR 16 PARENTHESIS ERROR, STATEMENT

(SEQ number)
ERROR 17 DOUBLY DEFINED FORMAT, STATEMENT

(SEQ number)
ERROR 18 LIST SYNTAX, STATEMENT (SEQ number)
ERROR 19 UNREFERENCED STATEMENT NUMBER,

STATEMENT (SEQ number)
ERROR 20 DOUBLY DEFINED STATEMENT NUMBER,

STATEMENT (SEQ number)
ERROR 21 nnn UNDEFINED STATEMENT NUMBER(S),

STATEMENT (SEQ number)
ERROR 22 UNDEFINED FORMAT, STATEMENT

(SEQ number)
ERROR 23 CODING UNINTELLIGIBLE, STATEMENT

(SEQ number)
ERROR 24 SYSTEM ERROR, STATEMENT (SEQ number)
ERROR 25 LEFT SIDE INVALID, STATEMENT

(SEQ number)

ERROR 2(? EXCESS OF - SIGNS, STATEMENT
(SEQ number)

ERROR 27 ARITHMETIC SYNTAX ERROR, STATEMENT
(SEQ number)

ERROR 28 INCORRECT MODE OF FUNCTION
ARGUMENT, STATEMENT (SEQ number)

ERROR 29 UNDEFINED FUNCTION NAME,
STATEMENT (SEQ number)

ERROR 30 FIX TO FLOAT POWER, STATEMENT
(SEQ number)

ERROR 31 DOUBLE OPERATORS, STATEMENT
(SEQ number)

ERROR 32 MULTIPLE EXPONENT, STATEMENT
(SEQ number)

ERROR 33 NO TAPE UNIT NUMBER, STATEMENT
(SEQ number)

ERROR 34 COMPUTED GO TO SYNTAX, STATEMENT
(SEQ number)

ERROR 35 HALT NUMBER NNNNN TO BE DISPLAYED
AS NNN, STATEMENT (SEQ number)

ERROR 36 ILLEGAL SENSE LIGHT, STATEMENT
(SEQ number)

ERROR 37 ILLEGAL SENSE SWITCH, STATEMENT
(SEQ number)

ERROR 38 ILLEGAL RANGE OF DO, STATEMENT
(SEQ number)

ERROR 39 ILLEGAL NESTING, STATEMENT
(SEQ number)

ERROR 40 DO SYNTAX ERROR, STATEMENT (SEQ
number)

ERROR 41 CONSTANT LEFT SIDE OF EQUAL SIGN,
STATEMENT (SEQ number)

ERROR 42 MODULUS

ERROR 43 MANTISSA

ERROR 44 CONSTANT SYNTAX, STATEMENT (SEQ
number)

ERROR 45 HOLLERITH COUNT, STATEMENT (SEQ
number)

ERROR 46 MIXING IN ARITH, STATEMENT (SEQ
number)

ERROR 47 BAD LIST, STATEMENT (SEQ number)

Compilation Time Halt

When running as a tape system, a halt will occur with
3333 displayed in the B-address register if a permanent
redundancy is detected on the systems tape. Press
S tart to reread the record.

Object-Program Storage Allocation

The storage allocation of compiled programs is dia
grammed in Figure 7.

The following information will be helpful in the
estimation of the size of an object program:

Variable storage word-size,
including array members

Temporary storage word-size

FloatirIJg Fixed

f + 2
f + 4

k
k

The relocatable library and processing subroutines
appear in the object program only if needed.

I.
2.
3.
4.
5.
6.
7.
8.
9.

10.
II.
12.
13.
14.

Name Approx. Size

SINF/COSF 437
LOGF (or A * *B) 320
EXPF (or A**B) 297
COMMON (if 1 or 2 or 3 above) 263
ATANF 471
SQRTF 216
XFIXF (or I = A) 133
FLOATF (or A = I) 59
NEGATE (-B*C, etc.) 8
ABSF /XABSF (also requires NEGATE) 7
DO 92
LIST 404
DO/LIST COMMON (if 11 or 12 above) 50
SUBSCRIPTS (if variable) 220

2977

Sense Lights and Index
Locations

Input/Output and Arithmetic
Work Area

t--___ ..-. 333

700

END

Snapshot Program or Linkage
Program (object time starts
at position 337)

Fixed- and Floating-Point
Arithmetic

·1 nput/Output and Format
Routine

Simple-Variable and Temporary
Storage

Generated In-Line Procedure

Library Functions and
Processing Subroutines

Unused Storage, if any

List and Format Strings

Constants and Generated
Subscripting Parameters

Array Storage

Figure 7. Object Program Storage Allocations

41

The generated in-line procedure, the generated list
and format strings, the constants and generated sub
scripting parameters, all together generate less than
twice as many object program characters as are in the
source program.

For examples of typical storage allocation, see the
sample programs, Figures 8 and 9.

Object Program Operation Procedures
The compiled program may be executed immediately
after compilation, while still in core storage, by ready
ing any card or tape problem-data and pressing Start.

Execution of the Condensed Card Deck

To execute the object program at a later time:
1. Ready data tapes, if any.
2. Place the condensed deck in the read hopper.
3. Reset the machine.
4. Set any sense switches required by the source pro-

gram ..
5. Press 1402 Load.
6. Press Start when the reader stops at the last card.
7. Place card data, if any, in the read hopper when

required.
Note: Alternatively, card data may be placed in the hopper

behind the condensed deck at step 2.
When the compiler is used on tape, data cards, preceded

by a card containing a 5 and 8 multipunch in column 1, may
follow the source program.

Program Checking Aid

At any point during execution of the object program,
a snapshot of core storage can be obtained by execut
ing the snapshot program at position 337. Position
333 of the snapshot routine during compilation is not
available at object time. Sense switch F must be off
or printing will be suppressed. Programs containing
a linkage (XLINK) statement do not have this facil
ity; a transfer of control to 337 causes execution of
the linkage program.

When the snapshot program is executed, positions
84-86 will contain one of the display codes printed
during compilation. The SEQ number corresponding
to this display code identifies the current or most re
cently executed statement in which an arithmetic ex
pression appeared.

Obiect Time Halts or Error Conditions

In addition to the halts generated by STOP and PAUSE

statements, the object program will contain halts that
are invoked by badly coded or positioned data, or by
unanticipated values, tape errors, or end of file. When
the system halts at object time and the stop light is lit,
display the B-address by pressing the B-address regis
ter key-light.

42 Fortran: 1401 Specs. and Op. Proc.

One of the following three-digit halt codes may
appear:

Code
581

Meaning
A permanent read error was encountered on
the LIB tape during execution of the linkage
routine.

603 (during
execution of
linkage routine)
342 (during
execution of
monitor on the
LIB tape)

The necessary program segment is not on the
LIB tape. Press Start to get the segment from
the card reader.

777

888

999

A tape error was encountered in the limited
input/ output format routine.
End-of-file was encountered in the limited
input! output format routine.
Read error on the LIB tape during execution
of the monitor program on the LIB tape. Re-
wind the LIB tape and press TAPE LOAD to
try executing the monitor program again.
Check to see if the call card is still available
in the reader.

One of the following four-digit halt codes may ap
pear on the register:

Code Meaning

1001 The value of the index in a computed GO TO state
ment exceeds the number of exits.

1111 Parity errors when attempting to read tape, or having
skipped and blanked tape 50 times while attempting
to write tape. Press Start to continue the attempt.

1121 Data and FORMAT specifications disagree in mode or
acceptable characters. Not all disparity is detectable.

2002 The value of a computed subscript is greater than
15,999.

3700 Output record too long because of incorrect FORMAT

specifications. Snapshot routine has been destroyed.
Press Start to continue execution.

4002 End of file detected while reading tape. Press Start to
read next record (or first rewind and unload old
tape; load new tape).

4003 End of file while writing tape. A tape mark will be
written, and the tape rewound and unloaded. After
new tape is mounted, press Start to proceed.

Note: 1. An X will replace an output data field whenever,
a. a fixed-point value has E or F format, or
b. insufficient integer space has been allocated to an

F format value.
2. If an F format value is negative and the numeric

digits exactly fill the output data field, the sign is lost.

A coded message and the display address will be
printed in the leftmost positions of the 1403, in case
of the following errors. There will be no halt. The pro
gram will continue with the indicated result.
Message Meaning Result

NOF Exponent overflow during normalization
±+

9 ... 999
DZE Attempted to divide by zero

:t. +
9 ... 999

LNZ Attempted to find reciprocal of zero
± +

9 ... 999
EOF Exponential 1099

++
9 ... 999

LNZ Logarithm of zero
- +

9 ... 999
SCL Sine or Cosine argument too large zero
LNN Logarithm of negative number In largl
ZTZ Zero to zero power one
SQN Square root of negative argument v[afgl

Running Programs Containing
Linlcage Routine
The following are the procedures for executing a pro
gram that consists of more than one section or segment.
See Program Linkage.

Preparing the Condensed Decks for Execution

The condensed decks of the compiled segments are
read into storage (for execution) from cards, tape, or
both cards and tape. In the first two cases a single
combined deck is required. In the last case the con
densed decks to be read from cards are combined into
a single deck, and those to be read from tape are com
bined into a single deck that is loaded on tape.

Reading from Cards

In reading the compiled segments from cards, the con
densed decks of the segments are combined into a
single deck as follows:

1. Remove the clear-storage cards (first two cards)
from all the segments, except the first segment of the
program, and any others that require all of core
storage to be cleared before being read for exe
cution.

2. Place data cards behind each condensed deck that
requires data.

3. Combine the decks (with data cards) into a single
deck, in the order they are to be read.

Reading from Tape

In reading the compiled segments from tape for exe
cution, the condensed decks must be combined into a
single deck and loaded on tape (LIB tape). The pro
cedures are as follows:

1. Remove the clear-storage cards (first two cards)
from each segment.

2. Place the associated title card before the condensed
deck of each segment.

3. Combine the condensed decks into a single deck.
They need not be in the order they are to be read
from tape; however, they should be in that order
for efficiency in execution.

4. Load the combined condensed deck on tape using
the following procedure:
a. Place the LIB tape generator (phase 95) in the

reader followed by the combined c,Jndensed
deck (with title cards).

b. Ready tape unit 1.
c. Press the load key on the 1402. The LIB tape

generator performs the necessary loading opera
tion.

Note: Two halts may occur while writing the LIB tape.
When a halt occurs, display the contents of the B-address regis
ter. A 195 in the B-address register indicates that a title card
was searched for in the reader and not found. Put the necessary
title card in the reader and press START to read more cards.
A 666 in the B-address register indicates that the job is
completed.

Executing the Segmented Program

To run the segmented object program:

1. If all segments are to be read from cards:
a. load the 1402 card read-punch with the com

bined condensed card-decks.
b. press the load key on the 1402. The program is

loaded, and execution begins.

2. If all segments are to be read from tape:
a. ready the LIB tape on tape unit 1.
b. clear core storage to blanks unless previously

executed routines or data are to remain. This is
a precaution against errors resulting from extra
group-mark word-marks in core storage.

c. place the initial call card in the carn reader. It
should be followed by any card data or call cards
required by the entire program, in the order
they are to be read.

d. Press Tape Load.
e. Turn on sense switch G if a core-storage dump is

desired.

f. Press Start to read the initial call card. The first
segment is then read in and execution begins.

3. If segments are to be read from both cards and
tape, follow the procedure in item 2, also loading
the segments to be read from cards along with the
card data (for segments on tape) and call cards, in
the order they are to be read.

Sample Programs

Figure 8 illustrates a matrix calculation. Figure 9 illus
trates the use of library functions. In each case a
core-storage snapshot is specified for the printout. The
printout for the second program, however, also in
cludes a listing of the condensed deck.

43

~ "'%j
~ dQ.

~
"1

'"l'j
(1)

0 ~ ~
<'"+0
~
~

s::: ;.:
~ "1

~ x·
c (J
en ~
1j ()

~ E.. <:"l
;-0 ~
~

o·
~ i:l
~

0 I-'(j
$lJ

~ :+
"'tl

I-'

~
0
~

START OF FORTRAN COMPILATION

MACHINE SIZE SPECIFLED IS 08000
ACTUAL MACHINE SIZE IS 16000

SEQ

1
2
3
4
5
b
1
8
9

10
11
12
13
14
15
16
11
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

STMNT

C
C

13

2

15
10

3

4

5

b

11
16

8
q

18

17

12
7

FORTRA~ STATEMENT

APPENDIX E SAMPLE PROBLEM 1
MATRIX ARITHMETIC
DIMENSION AI1,1),VECTORI1) ,B[7,7)
SENSE LIGHT 1
Del 1 1= 1,7
DO 1 J=1,1
B I I , J) = 1./ FL OA TF I 1+ J-l)
A(I,J)=BII,J)
PR INT 13
FORMATI15HIHILRERT MATRIXII)
PRINT 2,A
FORMATIIX,1EI4.7)
PR I NT 15
FORMATI8HOINVERSE/I)
DO 6 K=1,7
VECTOR=I.
DO 3 1=2,7
VECTORI I)=0.
00 4 J=2,B
AI I,JI=A(I,J l/A
DO 5 1=1,55
A(I) =A(I+ll
DO 6 1=1,6
A(56) =AII,l1
DO 6 J = 1,7
AI I ,J)=AI I,J+1l-A(56)*AI7,JI
PRINT 2,A
IF(SENSE LIGHT 1111,12
PRINT 16
FORMAT(15HOMATRIX PRODUCT/I)
DO q K = 1,1
00 8 1= 1,1
VECTO~ I I) =0.
DO 8 J=1,7
V EC TOR I I) = VE C TOR I I) + A I I , J I * B (J, K)
PRINT lS,VECTOR
FORMATllX,1Fl4.8)
PRINT 17
FORMATI15HOTWICE I~VERTEO//)

GO TO 10
PRINT 7
FORMATIIH1)
STOP 111
END

0250973 PAGE

78~ INPUT CHARACTE~S

MODULUS IS 5
MANTISSA IS 15

STORAGE ASSIGNMENT-ARRAYS + EQUATED VARIABLES

B
VECTOR
A

1165-01991
1046-07164
6213-01045

A6V I9X
+4W A6U
KIT +4V

STORAGE ASSIGNMENT - SIMPLE VARIABLES

J
I
K

4284
4289
4294

28U
28Z
29U

CONSTANTS LOCATED FROM 06161 TO 06212 J6X-KIS

~ I-%j
O:l aa· =
~

~
STARTING ADDRESS OF STATEMENTS

0 ?' ~
-;
I:l

~ ?
~

I-.. ::!.
~ ~
C
I-.. ()
~

I\j

~ (=5"'
(';) E.. ~ I\j
~ g.
I:l
~ = ~

a ""0
I\j

~ ::+

SEQ STARTING ADDRESS DISPLAY

002 nu 4314 31Y
003 31Y 4318 32S
004 34/ 4341 34V
005 36U 4364 3~Y

006 411 4411 41Y
006 45/ 4451 45V
001 45V 4455 45Z
009 46W 4466 41*
011 47X 4411 48/
013 48Y 4488 49S
014 511 4511 51V

V:l
~
-;
0
~

015 52T 4523 52X
016 54W 4546 55*
016 56W 4566 51*
011 57* 4570 57U
018 59T 4593 59X
018 62V 4625 62 Z
019 62Z 4629 63T
020 65S 4652 65W
020 68* 4680 6AU
021 68U 4684 68Y
022 70X 4707 711
023 72X 4727 731
024 15* 4150 75U
024 80X 4807 811
025 811 4811 81V
026 82S 4822 A2W
027 83U 4834 R3Y
029 84V 4845 84Z
030 86Y 4868 81S
031 89/ 4891 S9Y
032 911 4911 91V
033 93U 4934 93Y
033 qqy 4<}q8 *0$
034 *OS 5002 tOW
034 *IT 5013 *IX
036 *IX 5011 *21
038 *2Y 5028 BS
039 *3S 5032 BW
041 *4T 5043 t4X
043 *5S 5052 *5w

--

SNAPSHOT OF OBJECT PROGRAM

INPUT/OUTPUT AREAS LOCATED FROM 001-332

FIXED OBJECT TIME ROUTINES LOCATED FROM 333-4279

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-J4ZOO
9,26XBH610t4 126XBH61 5 0.0 X RW4AZ81 IOt18A3810 -AREA-04Z00

1 1 21 1 1 1 11 III 1 1 III 1 1111 1 Z

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-04300
)081Bt6/B*8tJ7TJ7SJ8Y28Z45VB*6/B*8*J7TJ7SJaY28U32SB7003JT=2QZ+ZQU-JXTFtS+DV28UJ8S28ZJ8-AREA-04300
11111111111111111 11111

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-04400
US=J7W/31T*e700$-IT28UJ8S28ZJ8US-$+DV28UJ8S2aIJ8UStB/2tBW97*14SZ4/BW97*Z8tI2VBW97*-ISZ4/Bt6/Bta*J1TJ-AREA-04400

11 11 1 1 1 1 1 1 1 1 1 11 1 11 1 1 11 1 1 11 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-04500
7SJ8YZ9U81/S700+FS=J7WtSt6/St8tJ6YJ7SJ8Y28Z57tS100S+DV28ZJaUS=J1ZtBIZtBt6/BtetJ6YJ6XJ8Y28U62Z8700SJA-AREA-04500

1 1 1 1 1 11 1 1 1 1 1 1 1 11 1 1 11 1 1 1 1 1 1 1 1 11

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• S9 •••••••• 99-A~EA-04600
tZ8UJ8S$=SJAt28UJ8SS/K8Zt8/ZtSt6/Bt8tJ1TJ7tJ8VZ8Z68UB700SKAS28ZJ8US=SKBZ28ZJ8USt8/2t8t6/BtStJ7TJ7/J8-AREA-04600

1 1 1 1 1 11 1 1 1 1 1 1 1 1 11 1 1 1 1 1 11 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-04700
Y28Z49SB100AFU=$KAS28ZJ8UStBt6/Bt8tJ7TJ1SJ8Y28U6aYB700$-IT2SUJ8S28ZJ8US=AFU*SKASZ8UJ8SSN+SKASZ8UJ8S2-AREA-04100

1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• S9 •••••••• 99-A~EA-04BOO
8ZJ8UStB/ZtBW91*ZStI2VVt3S0S11,081AW97*-4TZ4/Bt6/BtStJ7TJ7SJSY29UtlXSt6/BtStJ7TJ7SJ8Y2SZtOS8100$+DV2-AREA-04800

1 11 1 11 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••• •••• 59 •••••••• 6q •••••••• 19 •••••••• 89 •••••••• 99-A~EA-04900
8ZJ8US=J7ZtBt6/BtatJ7TJ7SJ8Y28U87SB700S+DV2BZJ8U$=$-IT28UJ8SZ8ZJBUS*S+DVZ9UJBS28UJ8US+S+DV28ZJ8USt8/-AREA-04900

1 11 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-05000
2tSW97*-8/Z3TB84ZBW97*JITZ4/B48YBW97*J5/Z4/Nl11.S*4TNOOO.Bt5SHSOSH094H0940-4B/5XH094MOJ1/2WMMO-5/3t~-AREA-05000

1 11 1 1 1 11 1 1 1 11 1 1 11 1 11 1 1 1 1 1 1 11 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-A~EA-05100
OJl/3XMOJ4/4UH/5S0J5AOOOOOO+000J9TSOOOJ9TVOOOJ9TKBOOOHSOSMO-2/6X+000J9TMO-8/8/S000J9TMOJI/9YLJ9TOOOB-AREA-05100

1 1 1 1 1 1 111 1 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• Z9 •••••••• 39 •••••••• 49 •••• •••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-J52JO
000H094HS9WO-2HTOtO-3MO-2V9XMV9X094VTOXO-OIBTZVO-0,BU5WO-O$BU7YO-O(BV3XO-O)BVO/0-0=MWOtOB9MV9XOOOBOO-AREA-05200

11 1 1 1 1 1 1 1 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-OS300
OXXXXXXMO-2089HV9XO-3BS9tYJ36T3lBU3/WOS2SVT8XTOS2MO-6TOWD690UOtDVT8*TOSKD692UOtDYT8STOSMTOT089H0890t-A~EA-05300

1 1 1 1 1 1 11 1 1 11 1 11 1 1

~ t-rj
00 ciQ'

C
"1

~
('tI

0 ?' :4-
'""l
\::l

?: ~
~ ::I .

~ :><

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-05400
OM089TOTCTOWTOTBS9*/YU2*TOSBU4VMO-6TOWMWOT089HV9XO-1BS9*BWOXYU6S088M094V9XBS9*H0940-1B/5TDO-OH094BVO-A~EA-054DJ

1 1 11 11 1 1 111 1 11 1111

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-05500
YMO-3094MOJ2V5*MMO-6V5UMOJ2V6/HWOWO-OMWOW094AOOOOOO+00OJ9TSOOOJ9TVV8UJ9TKHV9XOJ6BS2YMOJ5V9XBS2Y -A~EA-055DO

1 1 11 1 1 1 1 1 1 1 1 1 1 1 1

0 CJ
en e:.
~ (";)

~ E... C':l
~ ;-:>

\::l
o·

~
l:j

~
~

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-05 bOO
2S. HX8VMO-3YO/SVOWBW2XZMO-9W5/MO-6W4U+000Vl/l000YlW'Vl/Y2SAY2SYOWCYOTY2UBX8WTBXO*OJOSH0940-6BW2X-AREA-05600
1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREl-J5700
AY2WYOTBXO*ZYYOSYOW+YOU090YWZZYOUMYOW089M089X6XYX9WX6WMYO/089H0890*OYYO*088H0940JIBOOO~-02.BX8W2SK3 -AREA-05700
1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1

0 p.:>

~ ~
CJ1.

"tl
'""l
C

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-058JO
159F-2G9Y2G9*87B/34)W87VY5YO-41BY6VD2G9W84H094250l2G9M692Y8ZH099000+099W82B*I-AREA-05800
1111 111 11 1 11 1 1 1

~
•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-05900
OBY2XO-4NAY4S0-4F *,KAS+4V.,+DVA6U •• BJ5200ABl281HILBERT MATRIXRK08BK08BK23BJ5200AH0990+1BL85EO-AREA-0590D

1 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 11

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-06000
OG003011BK23BJ5200ABL280lNVERSERK08BK08RK23BJ5200ABL28OMATRIX PRODUCTBK08BK08BK23RJ5200AH0990+1Bl85F-A~EA-06000
1111111 1111111 111111 11

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-06100
OOG006008BK23AJ5200ABL280TWICE INVERTEDAK08BK08BK23BJ5200ABL281BK238255671AOA+0+11917AO+1 -AREA-OblOO
1 1 1 1 1 1 1 1 1 1 1 1 1 11 111 1111 1 1 1 1 11

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-06200
-AUA-06200

- - --- - - --- -~- - - - -- - - ---- ----

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-07soo
-MEA-07600

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-07700
-HEA-07700

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-07800
-AHA-07800

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-07900
-AREA-07900

----------------------------------~-----

~
~ END OF COMPILATION ::t
;.:

PRESS START TO GO

- ----- - - - --- -- - -- -- --- - - -- - - - - --- -- - - - - - - - - - - - - - - - - --
HILBERT MATRIX

O.lOOOOOOE 01 0.5000000E 00 0.3333333E 00 0.2500000E 00 0.2000000E 00 0.1666667E 00 0.1428571E 00
0.5000000E 00 0.H33333E 00 0.2500000E 00 0.2000000E 00 0.1666667E 00 0.1428571E 00 0.1250000E 00
0.3333333E 00 0.2500000E 00 0.2000000E 00 0.1666667E 00 0.1428571E 00 0.1250000E 00 O.lllllllE 00
0.2500000E 00 O.2000000E 00 0.1666667E 00 0.1428571E 00 0.1250000E 00 O.lllllllE 00 0.1000000E 00
0.2000000E 00 0.1666661E 00 0.1428571E 00 0.1250000E 00 O.lllllllE 00 O.lOOOOOOE 00 0.9090909E-01
0.1666661E 00 0.1428571E 00 0.1250000E 00 O.lllllllE 00 O.lOOOOOOE 00 0.9090909E-Ol 0.8333333E-Ol
0.1428511E 00 0.1250000E 00 O.lllllllE 00 O.lOOOOOOE 00 0.9090909E-Ol 0.8333333E-Ol 0.1692308E-Ol

INVERSE

0.4900000E 02-0.1116000E 04 0.8820000E 04-0.2940000E 05 0.4851000E 05-0.3880800E 05 0.1201200E 05
-0.1176000E 04 0.3163200E 05-0.3115200E 06 0.1128960E 01-0.1940400E 01 0.1596612E 07-0.5045040E 06

0.8820000E 04- O. 3175200E 06 0.2851680E 07-0.1058400E 08 0.1871l00E 08-0.1511724E 08 0.5045040E 01
-0.2940000E 05 0.1128960E 07-0.1058400E OR 0.4032000E 08-0.7276500E 08 0.6209280E 08-0.2018016E 08

0.4851000E 05-0.1940400E 01 0.l87l100E 08-0. 7216500E 08 0.1334025E 09-0.1152598E 09 0.3183180E 08
-0.3880800E 05 0.1596672E 07-0.l511124E 08 0.6209280E 08-0.1152598E 09 0.1005903E 09-0.3329126E 08

0.1201200E 05- O. 5045040E 06 0.5045040E 01-0.20180l6E OB 0.378 3180E 08-0. H29726E 08 0.1l0990c)E 08

MATRIX PRODUCT

1.00000000 0.00000000 -0.00000003 0.00000011 -0.00000023 0.00000027 -0.00000005
0.00000000 1.00000000 - O. 00000002 0.00000001 -0.00000024 0.00000013 -0.00000004
0.00000000 0.00000000 0.99999998 0.00000004 -0.00000011 0.00000010 -0.00000003
0.00000000 0.00000000 -0.00000001 1.00000004 -0.00000010 0.00000008 -0.00000003
0.00000000 0.00000000 -0.00000001 0.00000002 0.99999991 0.00000008 -0.00000001
0.00000000 0.00000000 -0.00000001 0.00000004 -0.00000009 1.00000007 -0.00000002
0.00000000 0.00000000 -0.00000001 0.00000003 -0.00000009 0.00000336 0.9999999B

TWICE INVERTED

0.1000000E 01 0.5000000E 00 0.3333333E 00 0.2500000E 00 0.2000000E 00 0.1666667E 00 0.142B571E 00
0.5000000E 00 0.3333333E 00 0.2500000E 00 0.2000000E 00 0.1666667E 00 0.142851lE 00 0.1250000E 00
0.3333333E 00 0.2500000E 00 0.2000000E 00 0.1666667E 00 O.142851lE 00 0.1250000E 00 O.lllllllE 00
0.2500000E 00 0.2000000E 00 0.1666661E 00 0.1428'HIE 00 0.1250000E 00 0.1l11111E 00 O.lOOOOOOE 00
0.2000000E 00 0.1666661E 00 0.142851lE 00 0.1250000E 00 O.llll111E 00 O.lOOOOOOE 00 0.9090909E-Ol
0.1666667E 00 O.142851lE 00 0.1250000E 00 O.lllllllE 00 O.lOOOOOOE 00 0.909090QE-Ol O.8333333E-Ol
0.1428571E 00 0.1250000E 00 O.lllllllE 00 O.lOOOOOOE 00 0.9090909E-Ol 0.83333 HE-Ol O.1692308E-Ol

CIt "Tj
0 aq'

:::
"'1

"t'j
('t)

0 ~ ;t
~

~ ~
('t)

'-'
0 ~

0
..,..,

'-' t'"'
en s:.

'1::! "'1
<':) ~
~ "'1
:-> '<

s:::. "Tj
;: :::
s:::.... ::s

a ;4.
0'

~ r;.
~ ... '"t:j 0
~ ~

::\.
......

START OF FORTRAN COMPILATION

MACHINE SIZE SPECIFIED IS 08000
ACTUAL MACHINE SIZE IS 16000

SEQ

1
2
3
4

5
6
1
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

STMNT

C
C

3

6
7

2

4
9

5

FORTRAN STATEMENT

APPENDIX E SAMPLE PROBLEM 2
EXERCISE LIBRARY FUNCTIONS AND PU~CH OBJECT DECK
PRINT 8

FORMATI48HIA=21ISQRTII-COS(X) •• 2)COS(X}SINIX)/ABSISINIX) I»~
PR IN T 1
FORMAT(91HO I DEGREES A EXPONENTIALIA)=B
LOGARITHMIB}=C I SINI2X)=D C-DII)
FI=l.O
DEGREE=1.5
DELTA=I.51019632619489661923/12.0
ARG=DELTA
A=(FI+FI)·SQRTF(I.0-COSFIARG) •• 2)·COSF(ARG)
IF(FI-24.)1,7,6
A=-A
B=EXPF(A)
C=LOGF(B)
D=FI-SINF(ARG+ARG)
DIFF=C-D
P~INT 2,FI,OEGREE,A,B,C,D,DIFF
FORMATIIX,F3.0,F9.1,FI9.10,EI9.10,2F19.10,E12.1)
FI:FI+l.O
DEGREE=DEGREE+7.5
ARG=ARG+DEL T A
IF(FI-49.0)3,4,5
PRINT 9
FORMA T (IH 1)
STOP III
STOP 711

0250983 PAGE

645 INPUT CHARACTERS

MODULUS IS 5
MANTI SSA IS 20

STORAGE ASSIGNMENT-ARRAYS + EQUATED VARIABLES

NO ARRAYS

STORAGE ASSIGNMENT - SIMPLE VARIABLES

ARG
DEGREE
FI
DIFF
D
C
B
A
DEL TA

4301
4323
4345
4361
4389
4411
4433
4455
4477

301
32T
34V
36X
38Z
411
43T
45V
41X

CONSTANTS LOCATED FROM 07924 TO 07999

SEQ

001
003
005
006
001
008
009
010
011
012
013
014
015
016
018
019
020
021
022
024
025
026

STARTING ADORESS OF STATEMENTS

STARTING ADDRESS

52W
53X
54Y
56*
51S
58Y
60*
66*
6BY
101
7lU
12X
14Y
16U
11V
191
BOX
B2T
85Z
81*
81Z
88Y

4526
4537
4548
4560
4512
45B8
4600
4660
4688
4101
4714
4127
4148
4764
4775
4191
4807
4823
4859
4870
4879
4888

DISPLAY

53*
541
55S
56U
57W
59S
60U
66U
695
10V
7lY
731
75S
76Y
77Z
79V
811
82X
86T
81U
BBT
89S

~ ~
~ ~.

~
~ SNAPSHOT OF OBJECT PROGRAM

~
~

c ~ ~
INPUT/OUTPUT AREAS LOCATED FROM 001-332

~
? ? FIXED OBJECT TIME ROUTINES LOCATED FROM 333-4219

~
N
~ 0
0 ~

N
~

~ &
~

~
~

~ ~

~ ~

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 1q •••••••• 89 •••••••• 99-A~E~-04200
9,26XBH610t4 126XBH61 5 0.0 X RW4A281 IOtlBA3810 -~REA-04200

1 1 21 1 1 1 11 111 1 1 III 1 1111 1 1 2

~ ~
~ C
~ ~

a ~ o·
~ ~

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-A~EA-04300
-~RE~-04300

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-A~=A-04400
~

~ c
~ ~

~

-AREA-044DO

w •••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-04SOO
BW91*F2TF2SBW91*FBWF2SB7003DV=16StB7003BT=I6WtB1004GX=15V/13VtB1003+/=4~Xt-A~EA-04500

1 11 1 1 11 1 1 1 11 1 11 1 11 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-ARE~-04600
B100S+/=3+/CtS2V=50/*50/N+16SQt5+/=3+/Ct4EV=3DV+3DV*52V*50/tB70050/=3DV-I2XtV68V2G1BB10/B1004EV=4EVN-AREA-04600
1 1 11 1 11 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• S9 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-04100
tB1004CT=4EVEtB1004A/=4CTGtB1003HZ=3+/+3+/S*3DVtB7003FX=4A/-3HltBW91*HOWFOtB10030V=3DV+I6StS1003BT=3-AREA-04100
11 1 11 1 11 1 11 1 11 11 1 1 1 11 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-~~EA-04600
BT+16WtR7003+/=3+/+4GXtB70050/=3DV-13/tB85Z2800VB712G1BB60*BW97*IOYF2SNll1.B81*~177.BS7ZNOOO.B88YH94-A~EA-04BOO

11 1 11 1 11 1 1 1 11 1 1 11 1 11 1 11 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~E~-04900
WMO-291/+00011VMO-892VSOOOI7VMOJ194SLI1VOOOBOOOH094Ht4to-lHt4UO-3MO-2T4/MT4/094VtS/0-OlB*610-0,SSOtO-A~EA-)4 gO)

1 1 1 1 1 1 111 1 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• S9 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-05000
-OSBS2S0-0(BSS/0-0IBS4VO-0=MT4UOS9MT4/000BOOOXXXXXXMO-2089HT4/0-3Bt3UYJ36t8TB/1VT4W2BV/3/t4W2MO-6t5t-AREA-05000

1 1 1 1 1 1 1 1 1 1 1 1 11 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-05100
D690/4UDV/2Ut4WK0692/4UDY/2Wt4WMt4XOS9H0890tOM089t4XCtStt4XA*3U/Y/6U*4WB/SIMO-6t5tMT4X089HT4/0-7B*3U-ARE~-05100

1 11 1 11 1 1 1 1 1 1 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••• •••• 59 •••••••• 69 •••••••• 79 •••••••• S9 •••••••• 99-A~EA-O~200
B YSOW088M094T4/Bt3UH0940-1BS9XDO-OH094BS5SMO-3094MOJ2S9UMMO-6S9YMOJ2TOVHT5tO-OMT5t094AOOOOOO+OOOI-AREA-05200
1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• S9 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-05300
7VSOOOI7VVT2YI1VKHT4/0J6B91SMOJ5T4/B91S 2S. HT9XM2G9250DLWlSSWlS2M9(0*0250D2M92G9MOQ089BOOOHV-A~EA-05300

1 1 1 1 1 1 1 1 11 1 1 11 1 1 1 111 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-05400
4/)VO*V2SS2+2)280),S096H094250Z250,0*OBV3UO-0 Y2510-1AO-12+2AWl*095C094089AV3UUAWO/WOUAWOUWOX~000251-A~EA-05400

1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 9~-A~EA-05500
+'2G92E4Y2E4255N255000+(WOXO*4BU3*.280AOOOS2G90WIT280YWl/2G9YT9YWl/+WlTW19A15523025B5092994045bB4011-A~EA-05500
11 1 1 11 1 1 1 1 1 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• b9 •••••••• 19 •••••••• 89 •••••••• 99-AREA-05600
9 A+ABW3Y924CB/42SY2G9Y3XBW5tBV4SSY-4SY3XM-4T-4X+W19WB2S-4SW19VlIZW19(A-4UW19S099W79V-OUW19-AREA-05600

11 1111 1 1 1 1 1 1 1 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• B9 •••••••• 99-AREA-05100
B+W82W19H089-AZ+W80095BT5/+0*1095S-4W095VX3T095BBX6T924CH0940-1Y-JU*81D-JU-4XSWltSW19BY5S-4X2+2G92+2-AREA-05100

1 1 1 11 1 1 1 1 1 1 III 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-05800
AY1Y+2+2249+251--4UWOU+-4YWO/SWOXBT9Y+*81H0942+1B*24BY1YD-4S0*0--4ZWOUSW19BY2SHZ1YM2G9250HOB9l-5*'2G-AREA-05800
11 11 1 1111 III 1 1111 111

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-05900
92El-2522G9S251BOOOA099W19VZ8VW19K+W82W19Y2G92G8+2G82G9AW82-W83W1tY-4S*81BY5S924CBX9TBV4S924C+W82W19-A~EA-05900

1 111 1 1 1 1 11 1 1 11 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-05OD~
B/34BU11SClB/42AKJBA1510196326194896619231A B4+ HFOY2G9W84BLO/SVK1V2G9KC2482~9QOB9tOtODL6WOt2C2Bll6Y-A~EA-06000
1 1 1 1 1 1 1111 11111 1 1 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-06100
BJIZU+2G82G9AL6WW19S2G9249-249L6VSL6WW19AL6W280SL6Z2ED(2G9249L249L6U'l6U2E1+2492G9+L6U251+l3YWl*+++,-A~EA-06100
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1111

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-06200
VO*V2SHU9WL6UHV2/HV4/K2YBUOZA2+2YL6V2+1+VGY248'W19252A2+1252H094252SW82BtlDVK9tO-41BU11LN~YL3Y2G9R-7-AREA-06200

1 11 III 1 1 1 1 111 III 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-06300
IVL2XO-41BU11LNZYL1*2G9B/lS)W84BV4S+BA+ A31+-Y06/*81DW84L9SBM1/~1tOBBBBYWB-AREl-D6300

1 1 1 1 1 1 1 11111 111 111 1 1 11111

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-A~EA-06400
4t81D01IW84VM5*W841,W84-2G9BM9S/BU11ITZY*81W1/BV4SBM3ZS+W19W82S06/W82VOIWW82KSJ6VW82VNI/W82KV/422~9K-A~EA-06400

1 1 111111 III 1 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-A~EA-06500
BU11EOFB/15H089VGX+W80095BT5/CO*006UBM9ST+OtOW19Y2G9W79SWltC2502G9QD89,OtOS251D06/0*O+D6SWOX++BT9YY2-A~EA-06500
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-06600
+22+1H0942+1B*24A099W82VM3IW82K-W80W1tSW19Y2G92G8+2GB2G9BN510A09IC024688-2G9Y2G9t87B/34VQ1U2G9KD2G92-A~:A-06600

1 1 1 1 1 1 1 1 1 III 11 11 1 1 1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-06100
B2M.H089LQ9W201H094+W80283AQ9W282'Q9Y285D283W19DBP6X2840H0890*lBP8SVP8SW19BAQ9WW19S2G9SRO*0-2tOKl)HO-A~EA-06100

III 1 1 1 1 1 1 11 1 1 1 1 1 1 1 11

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-06BDO
940-1-Q9WRO/AQ9WRO/AROSO-lS0-10*2VQ1S0~2BAO-10*2DRO/OP9H0890*2VP8WOP92B/34BU71SQ~YQ9W2G9/218BD9VA5+1-AREA-D6800

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1

CIt 'Tj
~ riQ.

~

"l'j ~
c ~ ;4.

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~E.-06900
A BAW llJO-4SBW lUo-4CB-5/0-4GBL 110-4EB01S0-4NB08XO-4Q -AREA-06900
III 1 1 1 1 1 11

~
s;:: ~ •••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-07000
(b -AREA-nODO
0 ~

C "'h

.....
t'"'4

CJ:) s=-
~ '"I
(':> ~
~ ~ :-"

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-07100
-ARE A-01100

\:l 'Tj
~ ~
~ ;:!

0
~ o·

~ ~
"1:l ... '"0 c
~ ~

:+

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-01200
-AREA-07200

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• B9 •••••••• 99-AREA-07300
-AREA-01300

CJl •••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-A~EA-07400
-AREA-01400

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 79 •••••••• 89 •••••••• 99-AREA-075JJ
to-AREA-07500

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-01 bOO
3DV3BT4EV4CT4A/3HZ3FX •• BJ5200ABL281A=21(SQRT(1-COS(X).-2)COS(X)SIN(X)/A8S(SIN(X»)BK23BJ5200ABL280 I-AREA-01bOO
11111111111 11111

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-07100
DEGREES A EXPONENTIAL(A)=B LOGARITHM(B)=C I SIN(lX)=D C-DBKOBBK-AREA-01100

1 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-AREA-01800
08BK23BJ5200AH0990+1BLB5FOOA003000BL85FOOA008001BL8SFOOA009010BL85EOOAOOSOI4BL85FOOB009010BL85EOOAOO-AREA-01800

1 1 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1 1 1 11 1

•••••••• 09 •••••••• 19 •••••••• 29 •••••••• 39 •••••••• 49 •••••••• 59 •••••••• 69 •••••••• 19 •••••••• 89 •••••••• 99-A~EA-07900
7005BK23RJ5200ABL281BK232DOB4IOBIBOB15701963267948966192COA2AOA1EOAAO+l -AREA-01900

1 1 1 1 1 11 1 1 1 1 11 1 1 11 3

------------------- -------- - - - - - - -- - - - - -- ---- -- - - - -- - - - -- - ----

CONDENSED DECK

,008015,022026,030031,044,049,053034.035036NOOOOI026 000150983
l068116,105106,110111B101/I9ZH029NNNC029056B026/B001/0991,001/00111110+000250983
,008015,022029.036040,041054,061068,012/061039 ,0010011040000350983
00000000000000 LOI4100,092091,081082,0830841040000450983
19Z0522 L008693,689691,69304~,0400401040000550983
H561H408M661656M099415M089422H089001 l036368,337341,348355,3620401040000650983
H099202/332/Nl10210B621FFIM094250 l033401,376380,381388,3933951040000750983
H216000H256000H2440002FK+662664/332 L035436,409416,423424,4264331040000850983
IFJM658306MH465M665668M668000 l029465,438440,447448,4524591040000950983
M651H465A661669V4596682A6706562,0+0 L035500,410474,481489,4964971040001050983
MOtOO+OV5200tOl)0+OC089688B568/22) l034534,508516,520527,5325331040001150983
M422089M415099/332/B563GB564. L029563,542549,553554,5595631040001250983
.000H0890*lB6320972H09920122'A670664 L036599,568575,583590,5915931040001350983
C664672B433/S664F4331M6802202535A670099l039638,601S12,616621,6286321040001450983
A4979 •••••••• 9-00000000B L026664,643652,654659,6626631040001550983
910 AIEExECUTED LOI6680,666668,610671,6730401040001650983
00000000000000 L014100,092097,040040,0400401040001750983
H094H086HV06MO-2089Q165HS21BS060-0S L035134,704708,712719,7237211040001850983
HT750tO/30311lW85280S091H094000 L031165,742746,141748,75575910400019S0983
CO-4W86MO-4924,201BT05TH8140-4B/990-5S L038803,773780,784189,7960401040002050983
MO-7089Q765VV3008AKVV30088SH099000)W81 L038841,811815,823831,83804010400021509B3
MO*OW82Q089MO*0250H094lW85V8830001 L034875,849853,860864,86804010400022509g3
V2S0t87SW852E2CO-IW85A099094RS339241 L036911,883890,897904,0400401040002350983
BS62924*S924+*87B*112800B/34SSW82W79 l036947,920924,928936,9410401040002450983
+W80090C099089V/65W79KB/88UAW79W82 L034981,955962,910975,0400401040002550983
+2502VO+I00090Vt870-0A2X90-0VO-O*A7 L035*16,989996,*O~*10,0400401040002650983
+W82W19MW750-1YVADH089 L022*38,*24t31,t32*33,*34t351040002750983
S2HIB/420t2tH0898*430*10POtI280S099094)L039t77,t43t51,*55*63,*10*771040002850983
ISS089W79+2G9,B/34W170V/42W79K L030/07,*19*80,t81t91,*92/001040002950983
BU71NOF+W89W79DW892G9MM2G8/278 L030/31,/12/15,/22/29,/30/34104000305D983
B155SW79S2G9B/34BU11DZEB/15 l027/64,/42/4b,/5a/54,/58/bll0400J31S0983
B*11USI00090V2G92X9B996AW82W79B/34 L034/98,/70/71,/B4/88,/9504010400a325D983
H0940-5AOOODO-ODDDQ765 L022S20,S06S10,S14S15,S16S171040003350983
B723000SB815B/S4SD2G90-1MDI0*0251 L033S53,S29S33,S38S45,S46S471040003450983
-W82BS83'2G92EIH0940-3SW90W79AW82W79 L036S89,S58S62,S69S76,S830401040003550983
Y2G9S97+*87B*24BT310-4*H7650-1C280W85 l037T26,S97TOl,T05T13,T200401040003650983
AOOOBT692800VT69WB7IVT920-41H0990+2 L035T61,T31T39,T41T55,0400401040003750983
PW782G8L2G9000VO-SO-41Q094B712AW912G8 l037T98,T69T76,T84T88,T920401040003850983
VU18280SY1G92G7BT62AW92W19BU48W711S2G9 L038U3b,U01U14,UI8U25,U330401040003950983
LW93280BU07DW892G9MM2G8SW92W79BU07 l034Ul0,U44U48,U55U56,U60U611040004050983
HU92/2+2HV250+0H099000MO+2212H2110002 L031V01,U15U79,U86U93,VOOV071040004150983
,201HV290+3H099000BOOOH099000,W87 l033V40,VI2V19,V26V30,V370401040004250983
IOt0250BW23924/BV98924*VV87924KAO*02G9 l038V7A,V48V56,V64V72,0400401040004350983
+2G9B/34S0*02G9BV19LOt0250'2G92El l033Wl1,V83V81,V94V98,W050401040004450983
M2E12G9B/34B/54250 MO*02EODHW64l2G9 l035W46,W19W23,W31W38,W39W431040004550983
+2G92EOIOt0251M2492G9R/34000tO l030W76,W54W61,W68W72,W75W761040004650983
000*00080= 91 L013W89,W81W84,W85W86,W87W~81040004750983

BEAI L004W93,W91W92,W93040,0400401040004850983
o L002W96,040040,04004J,0400401040004950983
05 M002V36,040040,D4004J,04004010400050S0983
22 M002837,040040,040040,0400401040005150983
ROT ~003T30,040040,040040,04004010400052S0983

M003S09,040040,040040,0400401040005350983
BW91*F2TF2SBW91*F8W LOI954U,53*53/,53U53X,54/54S1040005450983

CJl "1'j
~ ~.

c:
~

~
~

0 ~ ;t
!::l e ?

~
'-
~ 0
<0

......,
'- r-<
en s:.
~ ~
(':l Il:>
~ ~

~ '<:

!::l "1'j
~ c:
~ ::l

a ~ o·
~ ::l

(J;

~ ""d 0
~ Il:>

::+
-l

r ~2~B~O:3:V~I~S~B~:BT=~'~ -----~O~:5:/~5:Y~5~.~5:6~'~6~5~:::::a9~3------ -- -----------------
B7004GX=I5Y/I3VtB7003+/=4GXtB700 L03260T,57W5RX,5BY59S,S9l60t104000S650983
5+/=3+/Ct52V=SO/*50/N+I6SQt5+/=3+/Ct4EVL03964S,040040,040040,0400401040005750983
=3DV+3DV*52V*50/t870050/=3DV-I2Xt L03367V)64T64T,6Sl66t,66U67VI04000S850983
V68Y2G7BB70/B7004EV=4EVNtB7004CT=4EVE l03771S,68U6BY,69S70t,70/70V10400059S0983
tB7004A/=4CTGt87003Hl=3+/+3+/S*3DVt l03574X,71U71Y,72W72X,73/74X104000bOS0983
B7003FX=4A/-3HltBW97*HOWFOt l02777U,7SS76T,76U76Y,76l77S10400061S0983
B7003DV=3DV+I6StB70038T=3BT+16WtB7QO ~03681t,77l79*,79/79V,ROW80XI0400062S0983
3+/=3+/+4GXt870050/=3DV-I3/tRRSl2800 l03684W,82SS2T,A2X83Y,83l04010400063509R3
VB7l2G7BB60tBW97*IOYF2SNlll l02787T,85V85l,8bT8bU,8bX87tl04000b4S0983
.R87tN717.BB7lNOOO. L01989S,87V87Z,88TA8U,88Y89S1040006550983
B88YH94WMO-291/+000I7VMO-892VSOOOI7V l03692y,89X~0/,90Y91V,92S040104000b650983

MOJ194Sl17VOOOBOOOH094Ht4tO-2Ht4UO-3 l03b96U,93W94T,~,X9S/,95Y04010400067509B3
MO-2T4/MT4/094V*5/0-01Bt6l0-0,BSOtO-OS l038tOS,97~97l,98X99V,tOT0401040006850983
BS2S0-0(BS8/0-0)BS4VO-O=MT4U089MT4/000 l038t4t,tl/tll,t2Xt3U,t4/04010400069S0983
BOOOXXXXXXMO-20!9HT4/0-3Bt3UYJ36t8T l03St7V,t4Vt5/,tSYt6V,tbl0401040007050983
B/7VT4W2BV/3/t4W2MO-6t5tD690/4UD l032/0X,t8Ut8V,t9T/Ot,/OX0401040001150983
V/2Ut4WKD692/4UDY/2Wt4WMt4XOB9H0890tO l037/4U,/lW/2T,/2U/3/,/3Y04010400072S0983
M089t4XCtStt4XB*3U/Y/6Ut4WB/BlMO-bt5t l031/R/,/5S/5Z,/bU/7/,/7V0401040007350983
MT4X089HT4/0-7Bt3UB YSOW088M094T4/ l036S1X,/8l/9W,SJtSOU,Sl/0401040007450983
Bt3UH0940-1R89XDO-OH094RS5SMO-3094 l034S5/,S2SS2l,S3TS3X,S4/S4VI040007550983
MOJ2S9UMMO-6S9YMOJ2TOVHT5tO-OMTS*094 l036S8X,SSIS6t,S6XS7U,SA/0401040007b509B3
AOOOOOO+000I7VSOOOI7VVT2YI7VKHT4/0J6 l036T2T,S9VTOS,TOITIX,T2U04010400077509B3
B97SMOJ5T4/B97S 2S. l024T4X,T2YT3V,T3lT4S,T4VT4XI0400078509B3

HT9XM2G9250DlWlSSWlS2M9(Ot0250 l033T8t,T5/T5V,TbST6T,T6XT7JI040007950983
D2M92G9MDQOA9BOOOHV4/lVOtV2S l028UOY,T8YTAl,T9tT9U,T9YUOSI0400080509B3
S2+2l280),S096H094250l2S0 l025U3T,UITUIX,UIYUll,U2TU3tl04000A1509A3
,OtOBV3UO-O Y2510-1AO-12+2AW1t095 L033U6W,U3YU4W,USTU6t,J6X0401040DDA250983
C094089RV3UUAWO/WOUAWOUWOXN000251+ l034VOt,U7UU7l,UBWU9T,VOt040104000A350983
'2G92E4Y2E4255N25S000+(WOXOt4BU3t,2AO l037V3X,VOYVIV,V2SV2T,V3tV3UI040008450983
ROOOS2G9DWIT280Ywl/2G9YT9YWl/+WlTW79 l036V7T,V4SV4W,V5TV6t,V6X04010400085S0983
B15523025850929940456840119 A l038Wl/,V7YWO/,WOSWOV,wOY~1/10400086509B3
+ABW3Y924CB/42SY2G9Y3XBWStBV4SS l031W4S,WITWl~,W2SW2X,W3UW3Yl040008150983
Y-4SY3XM-4T-4X+W79W82S-4SW19VIIZw79K l036W7Y,WStW5X,W6UW1/,w7l04010400088509B3
A-4UW79$099W79V-OUW79B+W82W79H089-AZ L036XIU,WBWW9T,XO/XOY,XIV04010400089509B3
+W8Q095BTS/+Otl09SS-4W095VX3T095B l033X4X,X2SX2W,X3TX4t,X4Y0401040009050983
BX6T924CH0940-1Y-JUt870-JU-4XSWltSW19 L031X8U,X5WXbT,X7tX7X,X8/0401040009150983
BY5S-4X2+2G92+2RY7Y+2+2249+251--4UWOU l037Y2/,X9TYOt,YOUYl/,YlV0401040009250983
+-4YWO/SWOXBT9Y+t87H0942+1B*Z4RY7Y l034YSV,Y2ZY3T,Y3XY4/,Y4YY5S1040009350983
D-4S0tO--4lWOUSW79BY2SHlIYM2G92S0H089 l037Y9S,Y6TY7t,Y7UY7Y,YBSYAlI0400094509B3
L-St'2G92El-2522G9S251BOOOA099w79 l033Z2V,Y9XZOU,ll/llV,ll104010400095S0983
VZ8VW79K+w82W79Y2G92G8+2G82G9AW82 l033Z5Y,13UZ4/,Z4YZ5V,15104010400096509B3
-W83Wl*Y-4St87BY5S924CRX9TBV4S924C l03419S,16WZ7T,18/Z8V,19T0401040009750983
+W82W79B/34BU71SClB/42AKJBA l027-1l,-O*-OU,-OY-l/,-lV0401D400098S0983
1510796326794896619231A B4+ H L029-4Y,-4S-4T,-4U-4V,-4X-4YI04000995D983
FOY2G9WR4BLO/SVK7V2G9KC2482G9Q089 l033-8/,-5t-S/,-5Y-6T,-7/-7YI040010050983
,OtOOl6WO*2C281L6YBJIZU+2G82G9Al6WW79 l037JIY,-8W-9T,JO*JOV,JlS0401040010150983
S2G9249-249L6VSl6WW79AL6W280Sl6l2EO L035J5T,J2WJ3T,J4tJ4X,J5U04010400102509B3
12G9249l249l6U'l6U2El+2492G9+L6U251 l035J8Y,Jb/J6Y,J7VJ8S,JBZ0401040010350983
+l3YWlt+++,VO*V2SHU9WL6UHV2/ l028KIW,J9WJ9X,J9YJ9l,KOWKITI040010450983
HV4/K2YBUOlA2+2Yl6V2+1+VGY248'W79252 l036K5S,K2UK2Y,K3SK3Z,K4W0401040010550983
A2+1252H094252SW82B*lOVK9tO-41BU71LNN L037K8Z,KbtK6X,K7/K7V,K8TK8XI040010650983
Yl3Y2G9B-1/Vl2XO-41BU11lNZYL1tZG9B/15 l037lZW,K9XLO/,LOILIT,llWl2T1040010750983
)W84BV4S+BA+ l038l6U,L3/L3V,L3Wl3X,l3Yl3l1040010850983
A31+-Y06/t870WB4L9S L020L8U,l6WL6X,l6IL7*,L7/L7Y1040010950983

BMl/01tOBBBBYW84*87001/W84 L026Mlt,L9TL9U,l9VL9W,L9XMOUl040011050983

o

VMStWB41,WB4-1G9BM9S/BU71ZTZVt87Wll l035M4V,MIZM1T,M1XM3S,M3WM3Z1040011150983
RV4SBMlIS+W79W81S06/W81VOIWW81KS06VW82 L038M8T,M5*M5V,M6SM6I,~7X0401040011250983
VNI/W81KV/422G9KBU71EOFR/15H089VGX L034NIX,M9S~Ott~OUNOXtNI/0401D40011350983
+W80095BT5/CO*006UBM9ST+OtOW79V1G9W79 l037NSU,N2VNZI,N3WN4/,N4Y0401040011450983
SWltC250ZG9Q089,O*OS251D06/0tO+06SWOX L031N9/,N5lN6W,NltN1U,N7YN8Vl040011550983
++BT9VV2+ZZ+1H0942+1Bt24A099W82 L03102S,N9TN9U,N9YOOV,OlSOlWI040011650983
VM3ZW82K-WBOWltSW19V2G9ZG8+ZG82G9BN510 L03806*,03/~3V,D4S04Z,05W06tl040011750983
A091C024688-2G9V2G9t87 L02208S,06S06V,06WD71,07S07WI0400118509B3
B/34VQ 7U2G9K D2G91B1M, H089L Q9WZO 1 LO 31 PIlJ, OBX09V, POSPO T, POUPOVl 040011950983
H094+W80283AQ9W282'Q9Y285DZ83W79D L033P4X,PIZP1W,P3TP4t,P4X0401040011050983
BP6X1840H0890tlBP8SVP8SW19BAQ9WW19S1G9 L038PBV,P5WP6T,P6XP1V,P8S0401040D12150983
SROtO-Z,OKl)H0940-1-Q9WRO/AQ9WROI L033QIY,P9TP9X,P9YQOV,QlS0401040012250983
AROSD-lSO-IOtZVQlSOt1BAD-lO*ZDRO/OP9 L036Q5U,QZWQ3T,Q4/Q4V,Q5V0401040011350983
HOS9~*2VP8WOP92B/34BU71SQNV09W2G9IZ78 L037Q9/,06SQ7t,Q7UQ7Y,Q8/Q8YI04001145D983
B09VA5+1A BBWIUO-4S L019Rlt,Q9WQ9X,Q9ZROI,ROSROTl040012550983
BWIUO-4CB-5/0-4GBL71D-4EB07S0-4N L032R~S,Rll~2X,R3VR4T,0400401040012650983
R08XO-4Q LOIOR5S,R5/~5S,040040,040040104001Z750983

3DV3BT4EV4CT4A/3HI3FX.. L013F1S,FOTFOW,FOZFlS,FlVFlYl040012850983
BJ5200ABL2S1A=21(SQRT(1-COS(X) •• 2)COS(XL039F6/,F2XF3t,F3U040,0400401040012950983
)SIN(X)/ABS(SIN(XII)BK23BJ5200ABL28 L035F9WIF6SF6S,F8SF8W,F9tF9TI040013050983
o I DEGREES A EXPOL039G3V,040040,040040,0400401040013150983
NENTIALIA)=B LOGARITHM(B)=C L039G1U)G3WG3W,040040,0400401040013250983
1 SINI2X)=D C-DBK08BK08BK23BJ52 L035HOZ)G1VG7V,G9UG9Y,HOSHOWI040013350983
OOAH0990+1BL85FOOA003000 l024H3T,HITH2t,H2UH2V,H2VH3/1040013450983
BL85FOOA008001BL85F L019H5S,H3VH31,H4SH4V,H4YH5S1040013550983
OOA009010BLR5EOOA005 L010H1S,HSWH5Z,H6SH6W,H6XH1*1040013650983
014Bl85FOOR009010RLS5 L021H9T,H1WH8t,H8/H8U,H8XH9tl040013750983
EOOA007005BK23BJ5200A L02111U,H9VH9Y,IO/IOU,IOVIlSl040013850983
BL281BK232DOB410BIBOB L02113V,IIZI2*,I2UI2Y,13S04010400139509B3
15707963267948966192COA1AOA7EOAAO+l L03517t,15Z16t,I6TI6X,17t0401040014050983

L028I9V,I7WI9Y,040040,0400401040014150983
HOB9MOtOJ36MXOBD34HJ350t7MO*6Z68+X29L27L039X35,XOIX08,X15X22,X2904010400142509B3
)23V,27ZMOt3094H099Z00H13Y334BE560tO+ L037X12,X40X44,X51X58,X6504010400143509B3
BE250tO-BD710tO*VC120*OKVC750tOBH094116L039Yll,X81XB9,X97Y05,0400401040014450983
13321IH099100M-79D34,O+OBZ43 L028V39,V16Y17,V18Y25,Y32V361040014550983
VC12J362H24/100MOtOO+OQ094BJ37VV820-11 l038Y17,V48V55,Y61V66,Vl00401040014650983
BY55BQ08HK12C84BY32BQ08LO+00*OBZ43 L034Z11,Y82Y86,V93Y91,ZOlZ081040014750983
BJ37VY970+11BZ12HK22M09924/BO-OH-06 L035146,116Z24,Z28Z32,Z39Z4310400148509B3
M094-02V-3123UIB94X H094YB62088 L033Z79,Z54Z62,Z6bI69,Z730401040014950983
B-46089.B-070S9 H094000BOOOVJ3223Vl L035-14,188Z96,-03-01,-150401040015050983
C24/099BKOS/BJ32)23UM24Z089BZ73MO-2099 L038-52,-22-27,-31-35,-42-461040015150983
MO-5089MOt124SV-790*11)24Tl2710*lBJ37 L031-S9,-50-67,-15-79,-S60401040015250983
H094J09VC12J362BC84M24S0tlVJ3224TllOtl l038J21,-97J05,J09J16,J240401040015350983
,24TBOOO HJ51H0990+1BOOOH094 L028J55,J32J36,J31J41,J48J521040015450983
DO-ODODQL09MO-224WHK070-3 L025J80,J60J61,J62J63,J61J741040015550983
BJ89H094SE7424WVO-024WKBOOOH094M24/099 L038K18,J85J89,J~6K04,K08K121040015650983
BOOOVK4323VIC24/099BKOS/MZ68K56BK98000,L039K57,K13K31,K38K43,K500401040015750983
MZ68K71B94X BJ32089 MK71Z6BM08924Z L036K93,K65K69,K72KSO,K870401040015850983
,23UVK0823VIBOOOH094+0-2l27BO-300+ L034l21,K9Rl06,LIOl14,l21L251040015950983
H094Vl4723VIMO-00+OMO+OO-OBJ37H0940-1 L037L64,L32L40,L41L54,L5804010400160509B3
VL770-01BL32BQ08BO-OH094MO-325SSE7425S L038M02,L13l17,L81L85,L89L961040016150983
VM3125SBBO-l0-0IBO-70-0~BOJOBZ43SI7V L036M38,MIIM19,M27M31,M350401040016250983
,19WVF5123VI/024,O+ODH099HQ970+2 l032M70,M43M51,M55M59,M60M641040016350983
HA49,OOlBQ330-0IB41Z0-0AMO*019XMH089 L036N06,M15M19,M87M9S,N02N031040016450983
,OtOAO-6099HA450+2M25V,O+2BN490*10 L034N40,NIINIB,N25N29,N3304010400165509B3
V01419V2BN680-0EAL2719XBN15SL2719X L034N74,N49~51,N64N68,N750401040016650983

~ ~
~ ~.

c
~

~
~

a ~ ~
~

~ ?
~

~

~ 0
0 ~

~
~

~ ~
~ ~
~ ~
~ ~ ~

~ ~

= c
~ ~

a ~ o·
~ ~
~
~

~ 0
~ ~

~
~

DI9XF500MI9XBP040-0FCF50B64ROlSS L032006,N82N83,N87N9S,0020401040016750983
V022F48KYB62F48+L27I9XDI9X043DH0890tO L037043,015022,029036,03104010400168509B3
+83723SSE0523SC23S19XBP28UBP97M25YO+2M L038081,OSl058,065070,07408110400169S0983
H0990+2HA53AO-9099BA38VP66F48KCO-6F50 l037P18,089093,POOP04,P120401040017050983
B029T8074S023P17W001MB66YMF~0089 l032P50,P24P28,P32P39,P43P4410400171509B3
MB63M2110t3BP91YB620tOCO-9F50BP921 L034P84,P5~P62,P66P73,P800401040011250983

CI7W23TBQ65UYI9VOtOBQ65HQ32C23Y099BQ29TL039Q23,P92P91,Q04Q08,Q12Q191040011350983
NGOO.BOOOMOtOI1VAO-6099MO-6089+I7vOtO L031Q60,Q28Q29,Q33Q40,Q41Q5410400174509~3

BJ3710tOO+OHR~8DOtOO+OHA900+0HA53,OOO L037Q91,Q65Q12,Q76Q83,Q90Q941040011550983
VRIOOtOKBR52BR340+0 H099VR520+11BR10 L036R33,R06RIO,R18R22,R300401040017650983
YG810+0,O+lHA530+1H099111BA460-0I L033R66,R41~45,R52R59,R61040104J017150983
AO-9099AR930-0FOO+OOOOH099 L026R92,R74R62,R86R87,R88R891040017850983
H+880+1S0+10Q099B+440-0EV+44F48BCO-9F50L039+31,+00+04,+C:+09,+17+251040017950983
B+82UAF50099B+820t3 OOtlO+2H0890tl L034+6S,+31+44,+52+S9,+660401040018050983
V+820+2BH099B+44H099000B+94IAF470+0 L035AOO,+14+78,+82+B9,+940401040018150983
MB620+0BA330-0FH0990+400+0MF50YM L032A32,A08A16,A23A27,A31A321040018250983
BA66Z)11V)OOO)OOO)OOO,I1WBQOB L029A61,A38A42,A46A50,A54A581040018350983
BL96MA45089Y8620tOMABA95Zl000 L029A90,A66A73,A80A81,A82AB11040018450983
BA38DOtOCDH089CA49089RB40T l026B16,A95A99,BOOBOl,B05BlZl040018550983
,OtOMOtlOt01L27YOt2B26IMO+IO+OM l031B47,B21B28,829B36,B40B411040018650983
MM25YOt3BA381. 0000 L019B66,B49BS6,B60B61,R62B631040018750983
M089099Y06SB88DO+OI7W+M14W089LI7VOtO L036C02,B14B81,B88B89,B96040104001B850983
B15VNOOS.,23V/332/BC84 L022C24,C07Cll,C12C16,C20C2110400189S0983
BC01KBC840AZ BBBBR L018C42,C30C38,C39C40,C41C421040019050983
BBBBBBS l007C49,C44C4S,C46C41,C48C491040019150983
Bl28BC16DJ36C68U(UOMNOOT./332 L029C1R,C54C58,C65C10,C14C751040019250983
/BI28DJ36031M25Z041+25Z23SV02723Vl L034D12,C80C84,C91C98,D050401040019350983
M26t041A26S23SL211333M(UOO+ORLW97333 L036048,D20021,034D42,D490401040019450983
BE91lBC25D41RBC58KBC75/333/BZ28 L031D79,D54D62,D61D71,D15D761040019550983
BE05200 BE202000D200E04F02BE15'BU71 l035E14,D88096,E03E05,E06EIII040019650983
F0111FE05JM26V23Y1128285,200L2191804 L036E50,E20E25,E32E39,E43E501040019750983
KE254/080M26V23Y,00123VIl080279KZ281 L036E86,E56E60,E67E74,E75E821040019850983
BE56DJ36F080J36F21U(UOBBF23041RU(UOE L036FZ2,E91E9B,F05FIO,F180401040019950983
SE1423SVD2123SBN/ll.BC84E L026F48,F30F38,F42F43,F47F481040020050983
OO,0+OM08914WM099089AO-6089BF990-0I L035F83,F51F55,F62F69,F160401040020150983
B39*0-OAAO-9089,OtOH15YO*OSI9XSYB62I9V l038G21,F92F99,G03GIO,G14G151040010250983
YG8906SBG650+0 BG810+0-BG810+0'BG850+0+L039G60,G29G31,G45G53,0400401040020350983
BG93V13S0+11BJ31BG22-06S,0+lBJ37 L032G92,G65G73,G71G81,G8SG891040020450983
BB670-0IHOS917U)Z6W26X)Z6YS22TB28tO-OA L038H30,HOIH08,H15H19,H2304010400205S0983
BH81H23S0+0,26YVH6126WIH23S0+1V04XO+l1 L038H68,H35H42,H46H54,H610401040020650983
B04XO+l BJ37BH350+0.CO+OB63B16TTBI18U L031I05,H77H81,H89H96,IOI0401040020150983
V16T26WIBH61BI710-0FH22WO+4YI1603W l034I39,114I18,I26133,I400401040020850983
BI800+0EYO+003WB01SO+0+BOlSO+O-N/21. L036115,I4At55,I63I11,I150401040020950983
BI11VI960+12BJ37BI4SBOOYO+l BOlSBJ37 L03601/,180IAA,I92I96,00UOOYI0400Z1050983
,0+lV03WO+21B03WO+2 H099+0+122TB06S L03504W,OlW02U,03S03W,04T0401040021150983
BI710-0EH22WO+l+19VV07Y26WlB14tVlOtZ6YlL03908V,05V06S,06W07U,01Y0401040021250983
SO-922W+22W23SS23S22IAL2122T-22IA22Z22TL03912U,09TIOt,10XI1U,11Y0401040021350983
+22TI9XBB670-0IMI9XOOOLM15Y099)OOOBA54 L03816S,13S14t,14X14Y,15V15110400214509B3
V18S26WIHZ2Z0+0,26WVH6126XIDO+00t2HOS9 L038Z0.,17/17Y,18S19t,19X04010400215509S3
,26XBH610t4 '26XBH61 L02922Z,20V21T,21X22/,22U22XI040021650983

5 L01424T,23T23V,23W231,24S24TI040021750983
0.0 X RW L01126t,24X25t,25T25W,25Z26*1040021850983

4AZSl)OtlBA38 L01621W,26T26W,26X26Y,26Z27TI040021950983
10 L00321Z,040040,040040,04004010400Z2050983

151W080 022150983

END OF COMPILATION

e PRESS START TO GO
v:
('D

a.

------------------- --------------------------------------

......
o

A:21ISQRTII-COSIX).·2)COS(X)SINIX)/ABS(SIN(X»)

DEGREES A EXPO"4Et.JTIALI AJ =A

1. 7.5 0.2588190451 0.1295399315E 01
2. 15.0 1.0000000000 0.2718281828E 01
3. 22.5 2.1213203436 0.8342144716E 01
4. 30.0 3.4641016151 0.319477455lE 02
5. 37.5 4.8296291314 0.1251645325E 03
6. 45.0 6.0000000000 0.4034287935E 03
7. 52.5 6.7614807840 0.8639205288E 03
8. 60.0 6.9282032303 0.1020658443E 04
9. 61.5 6.3639610307 0.5805413502E 03

10. 15.0 5.0000000000 0.1484131591E 03
11. 82.5 2.8470094961 0.1723615989E 02
12. 90.0 0.0000000000 1.0000000000E 00
13. 97.5 - 3. 36464 75863 0.3457419839E-01
14. 105.0 -1.0000000000 0.9118819656E-03
15. 112.5 -10.6066017178 0.2415206303E-04
16. 120.0 -13.8564064606 0.9599290509E-06
11. 127.5 -16.4201390469 0.7388625308E-07
18. 135.0 -18.0000000000 0.1522997974E-07
19. 142.5 -18.3525906995 0.1070461693E-07
20. 150.0 -17.3205080757 0.3004684793E-07
21. 157.5 -14.8492424049 0.3556771481E-06
22. 165.0 -11.0000000000 0.1610170019E-04
23. 172.5 -5.9528380314 0.2598455530E-02
24. 180.0 0.0000000000 0.1000000000E 01
25. 187.5 6.4704161276 0.6451911321E 03
26. 195.0 13.0000000000 0.4424133920E 06
21. 202.5 19.0918830920 0.1956588401E 09
28. 210.0 24.2487113060 0.3396890234E 11
29. 211.5 28.0118489624 0.1463495638E 13
30. 225.0 30.0000000000 0.1068641458E 14
31. 232.5 29.9437006150 0.1010145526E 14
32. 240.0 21.1128129211 0.1085229847E 13
33. 247.5 23. 33452311n 0.1361616844E 11
34. 255.0 17.0000000000 0.2415495215E 08
35. 262.5 9.0586665186 0.8592685341E 04
36. 270.0 0.0000000000 1.0000000000E 00
37. 211.5 -9.5163046688 0.6935215619E-04
38. 285.0 -19.0000000000 0.5602196438E-Ofl
39. 292.5 -27.5111644663 0.1055333309E-11
40. 300.0 -34.6410161514 0.9028130704E-15
41. 307.5 -39.6029588119 0.6319074743E-l1
42. 315.0 - 42.0000000000 0.5749522264E-18
43. 322.5 -41.5348105304 0.9155055464E-18
44. 330.0 -38.1051111665 0.2825905416E-16
45. 331.5 -31.8198051534 0.1516471339E-13
46. 345.0 -23.0000000000 0.1026187963E-09
41. 352.5 -12.1644951198 0.5212269819E-05
48. 360.0 0.0000000000 0.1000000000E 01

LOGARITHMIBJ=C I SPH2X)=D C-D

0.2588190451 0.2588190451 0.4E-19
1.0000000000 1.0000000000 O.OE 00
2.1213203436 2.1213203436 O.OE 00
3.4641016151 3.4641016151 O.OE 00
4.8296291314 4.8296291314 O.OE 00
6.0000000000 6.0000000000 O.OE 00
6.7614807840 6.7614807840 O.OE 00
6.9282032303 6.9282032303 O.OE 00
6.3639610307 6.3639610307 O.OE 00
5.0000000000 5.0000000000 O.OE 00
2.8470094961 2.8470094961 D.OE 00
0.0000000000 0.0000000000 -0.4E-20

-3.3646475863 -3.3646475863 O.OE 00
-7.0000000000 -7.0000000000 O.OE 00

-10.6066011178 -10.6066017178 O.OE 00
-13.8564064606 -13.8564064606 O.OE 00
-16.4207390469 -16.4207390469 O.OE 00
-18.0000000000 -18.0000000000 O.OE 00
-113.3525906995 -18.3525906995 O.OE 00
-17.3205080757 -11.3205080751 O.OE 00
-14.8492424049 -14.8492424049 O.OE 00
-11.0000000000 -11.0000000000 O.OE 00

-5.9528380314 -5.9528380314 O.OE 00
0.0000000000 0.0000000000 -0.3E-16
6.4104161276 6.4704761276 0.lE-18

13.0000000000 13.0000000000 O.OE 00
19.0918830920 19.0918830920 O.OE 00
24.2487113060 24.2481113060 O.OE 00
28.0118489624 28.0118489624 O.OE 00
30.0000000000 30.0000000000 O.OE 00
29.9431006150 29.9431006150 O.OE 00
21.1128129211 27.1128129211 O.OE 00
23.3345237792 23. 3345237792 O.OE 00
11.0000000000 11.0000000000 O.OE 00

9.0586665786 9.0586665786 O.OE 00
0.0000000000 0.0000000000 0.4E-20

-9.5163046688 -9.5163046688 O.OE 00
-19.0000000000 -19.0000000000 O.OE 00
-27.5111644663 -21.5711644663 O.OE 00
-34.6410161514 -34.6410161514 O.OE 00
-39.6029588779 - 39. 6029588719 O.OE 00
-42.0000000000 -42.0000000000 O.OE 00
-41.5348105304 -41.5348105304 O.OE 00
-38.1051117665 -38.1051171665 O.OE 00
-31.8198051534 -31.8198051534 O.OE 00
-23.0000000000 -23.0000000000 O.OE 00
-12.1644951198 -12.1644951198 O.OE 00

0.0000000000 0.0000000000 -0.lE-15

Accuracy (Arithmetic Routine) .. 32
Accuracy (Fortran Functions) .. 34
A-Conversion 17
Alphameric Conversion 17
Arithmetic Expressions .. 10
Arithmetic Operation Symbols .. 10
Arithmetic Operations 11, 30
Arithmetic Precision 7
Arithmetic Routine , '" 31
Arithmetic Statement .. 11
Array Storage 9, 23, 24
Array Storage Preservation (Linkage Statement) 23
Arrays in Storage .. 9

BACKSPACE Statement .. 15, 21

Call Card 25
Carriage Control .. 18
Characters, Source Program .. 6
Condensed Card Deck 42, 43
Constants 7
Constants, Fixed-Point .. 7
Constants, Floating-Point .. 8
Continuation Lines 6
CONTINUE Statement .. 14
Control Card .. 26
Control Statements .. 11, 12
Comments Line .. 7
Compilation Halt ,. 41
Compilation Time 36
Compiler Description 38
Compiler Output 40
Compiling Operation Procedures 38
Compiling Procedure .. 39

Data Input .. 19
DIMENSION Statement 9, 21, 23, 24
DO Statement 13, 14

E-Conversion 16
END Statement 14
END FILE Statement 15, 21
EQUIVALENCE Statement .. 21, 22, 24
Executing the Segmented Program 43

F-Conversion .. 16
Field Format (Repetition of) .. 18
Fixed-Point Constants 7
Fixed-Point Variables .. 8
Floating-Point Constants .. 8
Floating-Point Variables .. 8
Format Routine .. 35
Format Specification 16
Format Specification List (Repetition of) 18
FOR~IAT Statement .. 14, 15
Fortran Functions 7, 9
Fortran Statements .. 11
Functions .. 7, 9, 32, 38
Functions, Fortran .. 7, 9
Functions, User .. 9, 38

GO TO Statement (Computed) 12
GO TO Statement (Unconditional) .. 12

Halts or Error Conditions (Object Program) 42
~ H -Conversion 17

~ I-Conversion .. 16
!2 IF Statement 12
~ IF (SENSE LIGHT) Statement .. 12

Index

IF (SENSE SWITCH) Statement .. 13
Index (DO Statement) 13
Initialization (Monitor Program) 25
Input/Output Operations .. 19, 35
Input/Output Option 22
Input/Output Statements .. 11, 14

Last Card Test .. 13
Library (LIB) Tape 23, 24, 25, 38, 43
Line, Comments 7
Line, Continuation .. 6
Linkage Statement 23
Lists .. 15

Machine Requirements 5
Matrices 15
Monitor Program 23, 25
Multiple-Record Formats .. 18

Naming Variables
Numeric Conversion

Object Program Operation Procedures

8
16

42

PAUSE Statement .. 14
Performance Data .. 36
Precision, Arithmetic .. 7
PRINT Statement .. 14, 20
Processor Phases .. 26, 27, 28, 29, 30
Processor Program .. 26
Program Linkage 22
PUNCH Statement .. 14, 20
Punching a Source Program 7

Range (00 Statement) 13
READ Statement .. 14, 19
READ INPUT TAPE Statement .. 14, 20
READ TAPE Statement .. 15, 21, 22
REWIND Statement 15, 21

Sample Programs 43
Scale Factors 17
Segment Location (Linkage Statement) 24
SENSE-LIGHT Statement 12
Source Program Characters 6
Source Program, Punching 7
Source Program, Writing .. 6
Specification Statements .. 11, 21
Statement Number 6
STOP Statement .. 14
Storage Allocation .. 41
Subscript Forms 8
Subscripted Variable 8, 9
Subscripts 8

Title Cards 23, 24

Use of Monitor Between Segments 25
User Functions .. 9, 38

Variables .. 8
Variables, Fixed-Point .. 8
Variables, Floating-Point .. 8
Variables, Naming of 8
Variables, Subscripted 8, 9

WRITE OUTPUT TAPE Statement 14, 20
WRITE TAPE Statement .. 15, 21, 22
Writing Expressions .. 11
Writing the Source Program 6

X-Conversion (Blank Fields) .. 18

61

READER'S COMMENT FORM

Fortran Spec ifi cations and Operating Procedures IBM 1401, Form C24- 1455-2

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. All comments will be handled on a non-confidential
basis.

• Does this publication meet your needs?
• Did you find the material:

Easy to read and understand?
Organized for convenient use?
Complete?
Well illustrated?
Written for your technical level?

Yes

o
o
o
o
o
o

No

o
o
o
o
o
o

• What is your occupation? _________________________ _

• How do you use this publication?
As an introduction to the subject? 0
For advanced knowledge of the subject? 0
For information about operating procedures? 0

As an instructor in a class? 0
As a student in a class? 0
As a reference manual? 0

Other ___________ . _____________________ ___

• Please give specific page and line references with your comments when appropriate.
If you wish a reply, be sure to include your name and address.

COMMENTS:

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

C24-1455-2

fold

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY •••

IBM Corporation

Systems Development Division
Development Laboratory
Rochester, Minnesota 55901

Attention: Product Publications, Dept. 245

fold

TIlIDllir
(!)

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N.Y. 10601

FIRST CLASS

PERMIT NO. 387

ROCHESTER, MINN.

fold

fold

C24-1455-2

TIrnoo
<!l

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, N.Y. 10601

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22.0
	22.1
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	replyA
	replyB
	xBack

