
"UU17U

11 .. 11.11

.,... I. •• ••• ••• , •• ,..... t.t.... .tt. '1" "'1"'1""
I.I!.:~I!.I~I~.II....". ••••• • •••••• "" •• "." "111111.$1' •••••• 11 ,.11... • •• _ ,,0:

»11 II I 3 I a II 3 U II' ,a, II U U I II III II II 3 U a I 1111 I II II U S S II II U 11., U U 3 II. II US II I U J U II In

.. :::::::::: n rog ra m. min· 9 ::::::::::::
........... ~.

JJJJ11111117 1717717171J7177J117 7717"111111771J'1JJJl1771777Jl1J1JJ1J1717'77JJt1J1111lJ1JJ11771717

•••
••••••• , ••••• ' ••••••••••••••••••••••••••••••• , •••••••• •••••••••• •••••••••••••••••• , •• ' ••••••••• 9 •••• ' •

........... IIII •••••••• c •••••••• " ••••• " q"M •• U ••• II"""~.~ ••••• I1" •••••••• ~ ••••••• ".a ••• w ~" !!!!!!!!! ••• t ••••••••••••••••••••••••••••••••
• 111111 ••••••••••, ••• ".,U ••• " II ••• " •••••••••••••• »"" 4I ... " u •••••••

11111111111111111111111111111111111 . 1111'1111111'1111'1111111111'11111111111111111111111'1111111

22J222Z21211!!2!!!!!!2!!Z!!1!2!2!11!2222!22!!222221

.I.'S, ••• S"'S"" ••••• ,I.,II.,II," ••• ".""" •• ",.,',.,I"'.'."I ••• ,.'.,I" •••••• ,.J""'.,,'I".'
•• 4 •••••••••••••••••••••••••••••

5551555555155151555551151111111111111115111111555111151155551555555155555511If51555555"555555511151555

.1 ••••••••• 1.1 •• 11 •••••••••••••••••••••••••••••• 1 •• 1.

J11111177777777717J77777777777J771777711777777177771777777J7177J11171771771117711JJ77771777177177777711

.......... , .. ,
!!!!!!!!!!!!!:!!!!!!!!!:!!!!!!!!::!!!!:!:!!!:!:!:!!!!~!:e!!!!!""""~""'II""I"I"'I"""""'I'
•• " ••••••••• " •••••• ftc Wlll •• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •••••••••••••

1111111111111 JOHN WILEY & SONS, INC., NEW YORK • LONDOt ... ;:i~i~;~~;;~
221221222122222222222222222222!222!22!2222!2212222212222222!222!22

'1ISISIII'I'I"'S.I.I •• I ••• I ••• SI"'I' •• ,I •••• ".I •• ,."""""""""""., •• 1., •• ,111"1,3,,,,11,111

••
1115515511551115555115115151551151155515555511115555551511155111151511.511111.5515555511115551511111.111

•••••••••••••••••••••••••••• 1 •••••••••••••••••••••••••••••••••••••• 1 •••••••••••••••••••••• 11 •• , ••••••••••

lllJl7177JJ777JJll1771l'll1717 71177ll"7JJJ"7l7J7'7'171"77777l1l771"17711lJ1"7'77"

Reprinted by permission, with minor revisions,
from Principles of Programming, Sections 1-12,

© 1961 by International Business Machines Corporation

All rights reserved. This book or any part
thereof must not be reproduced in any form
without the written permission of the publisher.

Library of Congress Catalog Card Number: 62-15331

Printed in the United States of America

A GUIDE TO IBM 1401 PROGRAMMING

[))AN~lEL [))o Mc(~A(~lEN
McCRACKEN ASSOCIATES, INC.

o

JOHN WILEY & SONS, INC., NEW YORK • LONDON

PREFACE

T his book has been written for the person
who wants to get a rapid grasp of the use of
the IBM 1400 Series equipment in business
data processing. The computers in this line
have been widely accepted for a large variety
of applications, creating the need for a text-'
book that introduces all the basic concepts
quickly and simply.

The reader is not assumed to. have any
background in computing or punched-card
methods. The early chapters therefore pre­
sent the basic ideas of data processing meth­
ods and equipment before proceeding to a
detailed discussion of programming concepts
and techniques for this line of computers.
The person who does know punched cards or
who knows programming for some other
computer will not find the presentation too
elementary but will be able to move more
rapidly.

It is anticipated that the book will prove
useful in a variety of situations.

1. It may be used for self-study before at­
tending a programming course or by those
who are not able to attend a formal course.

2. It may be used for formal or informal
training programs on the 1400 Series equip-

ment, either as a text or as a supplemental
reference.

3. It-may be used as the text for a college
course in programming or as a supplemental
reference in a course on the general principles
of electronic data processing.

This book is not intended to be a pro­
gramming manual for any computer but
rather to introduce the principles of pro­
gramming for the 1400 Series, with examples
in terms of the IBM 1401. A number of
case studies illustrate programming prin­
ciples and at the same time give an indica­
tion of typical applications of the equipment.
There are numerous exercises, with answers
to approximately half of them.

It is a pleasure to acknowledge the co­
operation of the International Business
Machines Corporation, which made the
publication of this book possible. Special
mention must be made of the many contri­
butions of Bill Lee, Norm Patton, George
Gerken, Bill Kelly, Abe Kaufman, Lou
Robinson, and Helen Taft. Mrs. Bea R.
Boxer did most of the typing.

DANIEL D. MCCRACKEN

Ossining, New York
March 1962

CONTENTS

The Nature of Data Processing 1
1.1 Introduction, 1
1.2 Basic Data Processing Ideas, 2
1.3 An Example of Sequential File

Processing, 4
1.4 An Example of Random Access

File Processing, 10
Exercises, 12

2 Introduction to Computing Equip-
ment 13
2.1 The IBM Punched Card, 13
2.2 IBM 1401 Data Processing Sys­

tem Components, 16
2.3 The Card Sorter and Collator, 23
2.4 System Components Used in Se­

quential File Processing, 26'
2.5 Representation of Information in

a Computer, 29
Exercises, 30

3 Coding Fundamentals 31
3.1 Computer Storage and Its Ad-

dressing, 31
3.2 Instructions, 33
3.3 Storage of Instr~,ctions, 38
3.4 Arithmetic and Control Registers,

40
3.5 Addition and Subtraction, 43

Exercises, 45

4 Symbolic Programming 47
4.1 Fundamentals of Symbolic Pro­

gramming, 47
4.2 Further Information on the SPS

Language and Processor, 52

4.3 Case Study: Payroll, 54
Exercises, 59

5 Branching 62
5.1 Fundamentals of Branching, 62
5.2 Further Branching Operations, 66
5.3 Case Study : Parts Explosion and

Summary, 70
Exercises, 73

6 Address Modification and Loops 75
6.1 Computations on Addresses, 75
6.2 Program Switches, 77
6.3 Program Loops, 78
6.4 Address Modification Loops, 79
6.5 Indexing, 84

Exercises, 88

7 Miscellaneous Operations 89
7.1 Editing and Format Design, 89
7.2 Printer Carriage Control, 92
7.3 Input and Output Timing, 94'
7.4 Buffering, 97
7.5 Program Timing, 98
7.6 Subroutines and Utility Programs,

100
Exercises, 101

8 Magnetic Tape Operations 103
8.1 Physical Characteristics of Mag­

netic Tapes, 103
8.2 Magnetic Tape Instructions, 106
8.3 Tape Programming with Auto­

coder and IOCS, 111
8.4 Inventory Control Case Study,

116
Exercises, 120

vii

viii CONTENTS

9 Random Access File Storage 122
9.1 Basic Concepts, 122
9.2 The IBM 1405 and 1301 Disk

Storage Units, 122
9.3 Disk Storage Programming for

the IBM 1405, 125
9.4 Disk Organization and Address­

ing, 132
9.5 Disk Storage Utility Routines,

134
9.6 Case Study: Wholesale Grocery,

135
Exercises, 138

10 Planning and Installing a Computer
Application 139
10.1 Problem Statement, 139
10.2 Problem Analysis, 140
10.3 Block Diagram and Program for

Inventory Control Processing,
142

10.4 Program Checkout, 146
10.5 Going Into Operation, 148
10.6 Documentation, 149
10.7 Summary, 149

Exercises, 150

11 Additional Programming Methods 151
11.1 Introduction, 151

11.2 Decision Tables, 151
11.3 The FORTRAN Coding System,

152
11.4 The Report Program Generator,

154
11.5 The COBOL Programming Sys­

tern, 156
11.6 Fundamentals of COBOL Pro­

gramming, 157
11.7 COBOL 'Program for Inventory

Control Case Study, 161

Appendix 1 IBM 1401 Instructions with
Symbolic Programming System Mne­
monics 163

Appendix 2 Autocoder Operation
Codes 167

Appendix 3 Card and Computer Character
Codes 170

Appendix 4 Instruction Timing Data 171

Appendix 5 IBM 1401: Configuration As­
sumed in Text 172

Glossary 173

Bibliography 177

Answers to Selected Exercises 179

Index 197

1. THE NATURE OF DATA
PROCESSING

1.1 Introduction

This book is intended to provide a basic
understanding of what is required to make
an electronic computer do useful work. In
order to reach such an understanding, it is
necessary to discuss four topics:

1. What kinds of things can computers do
in business data processing?

2. What is required to specify the proc­
essing to be done?

3. What are the components and functions
of a computer and how do they work?

4. What is "programming" and what are
the important programming techniques and
principles?

The emphasis in this book is largely on
the last of these four areas. The other ques­
tions are treated briefly in the first two chap­
ters and indirectly throughout the book. The
first two questions relate more directly to
the subject of system analysis or procedure
design. They are crucial to the successful
utilization of an electronic data processing
system but cannot be studied properly with­
out a background in programming. The
third question relates to computer engineer­
ing; the programmer needs to know a few
general characteristics of the subject but
almost none of the detail.

It is assumed that the reader of this book
has had no experience with computers or with
punched cards. No knowledge of mathe­
matics or accounting is required.

The reader who completes a careful study
of this book may expect to have learned a
good deal about programming. He will
know all the basic principles of the subject,
a little of how to get started on a project,
and what the major steps are. He will find
it much simpler to learn programming for
another computer or to proceed with a de­
tailed study of the machine (the IBM 1401),
which is sketched here. He should not ex­
pect, however, that he will have acquired
enough skill to undertake by himself the pro­
gramming of a major application. Learning
programming takes a certain amount of prac­
tice and, ideally, an opportunity to work on
one or two applications with an experienced
person.

The programming ideas presented here are
illustrated in terms of the IBM 1401 Data
Processing System. This machine was
chosen primarily because of its wide dis­
tribution. It should be realized, however,
that most of the basic principles of program­
ming are applicable to any computer. The
reader who studies the material in this book
thoroughly will have relatively little diffi­
culty learning any other system. There are
a few features of the IBM 1401 that are not
strictly typical of all computers, but they
constitute a small part of the subj ect when
compared with the broad general principles.
No one should be concerned that he is study­
ing material here that will not be useful to
him. It should also be recognized that every
computer has specialized features. Finally,

1

2 IBM 1401 PROGRAMMING

it should be noted in this connection that" no
attempt has been made to cover all of the features
of the IBM 1401 system; this book should be re­
garded as an introduction to programming, not as
a manual of programming for the IBM 1401.

One last point of information about the book
itself. The review questions and exercises are im­
portant. The review questions, which appear at
the end of most sections, allow the reader to be
assured that he understands the material thor­
oughly before proceeding. If the material has been
understood, these questions will be relatively easy;
if they seem difficult, a rereading would probably
be a good idea. The exercises at the end of each
chapter provide an opportunity to apply the prin­
ciples that have been studied. In some cases they
continue the development of a topic that could not
be treated fully in the text for lack of space. An­
swers to some exercises are given at the end of the
book.

1 .2 Basic Data Processing Ideas

Electronic computers are used in business for a
variety of reasons. When properly applied, they
can save time or money (or both) in producing re­
ports for management and government, in preparing
checks and earnings statements for employees, in
issuing statements to customers, and in keeping
records of accounts payable to suppliers. In many
situations they make it possible to obtain infor­
mation that would otherwise not be economically
justifiable. In some cases they provide the basis
for improved management control of a business
that would not be feasible for time or money rea­
sons without a computer. They are also widely
"used for engineering and scientific computations.

In carrying out these functions, a number of
basic computer operations are performed. Infor­
mation appearing on punched cards is listed
(printed). Various calculations are performed on
data. Detailed information is summarized (to­
taled) often according to several classifications.
Information is edited, which means two rather dif­
ferent things. In one meaning, source data (input
information) is checked for validity and accuracy
before it is used in further processing. In the other
meaning, editing refers to the rearrangement of
results for easy reading by inserting dollar signs,
decimal points, and commas, deleting zeros in front

of numbers, and providing adequate space between
numbers.

These operations are performed on data. It is
necessary also to consider how the data is organized,
since the arrangement of the information has a most
significant effect on the way the processing is done.
This brings us to a fundamental concept in data
processing, that of a file.

A file is a collection of records containing infor­
mation about a group of related accounts, people,
stock items, etc. For instance, an accounts receiv­
able file contains a record for each customer, show­
ing at least the customer's name, address, account
number, and amount owed. It may also contain
his credit limit, the length of time the amount owed
has been due (the "age" of the account), and other.
information, depending on the needs of the par­
ticular business. In a payroll file the record for
each employee contains such information as name,
payroll number, department, sex, social security
number, number of dependents, pay rate, year-to­
date gross earnings, year-to-date taxes withheld,
year-to-date social security tax, and often many
other things.

These examples relate to master files, which con­
tain semipermanent information, some of which is
updated (modified) periodically. A transaction
file, on the other hand, contains information used
to update a master file. Examples: a file containing
a record for each customer purchase or a file of
labor vouchers used to calculate gross pay. In
addition to master and transaction files, there are
report files that contain information extracted from
a master file. An example is provided by the quar­
terly social security reports required by the Fed­
eral Government.

It is obviously necessary to have some way to
identify each record in a file. This is usually ac­
complished by establishing one item in the record
as the key or control field of the record. The key
distinguishes each record from all others and is
used in almost all file operations. Examples of
keys: the customer's account number in an accounts
receivable application, the employee's pay number
in a payroll, the part number in an inventory con­
trol application, the salesman's number in a sales
commission job.

Almost all data processing involves operations
on files. It is frequently necessary to sort the rec­
ords in a file, that is, to put the records into as­
cending sequence (or descending, sometimes), ac­
cording to the keys of the records. For example,

it may be necessary to sort employee labor vouchers
into sequence on payroll number before this trans­
action file can be processed against the payroll mas­
ter file. As we shall see later in this chapter, data
processing methods fall into two broad and rather
different classes, according to whether the files do
or do not require sorting before the primary proc­
essing can be done.

Another common file operation is the combining
of two or more files to form one file. If the com­
bined file contains all records from the separate
files, this operation is called merging; if some of the
original records are omitted from the combined
file, it is properly called collating. (The distinction
between the two terms is not always observed in
practice.)

Careful planning is required to combine the basic
operations so that the files are properly processed
and the desired results produced. It is necessary
to establish goals for the application, the time
schedules that must be met, the exact nature of the
operations to be carried out, etc. All of this takes
more time than might first be expected for two
reasons that are fundamental to a proper under­
standing of electronic data processing.

1. All processing, with a very few exceptions,
must be defined in advance. For instance, it often
happens that a customer sends in a check for an
amount different from the amount shown on his
bill. The person planning the accounts receivable
job cannot proceed on the assumption that all pay­
ments will be for exact billed amounts and say,
"I'll worry about that problem when it happens."
The processing operations for such a situation must
be plann~d in advance. Again, it is necessary to
decide what to do about possible processing errors
before an application is placed on the machine.

2. A machine cannot exercise judgment unless it
has been given explicit directions for making a de­
cision. A machine can be set up to make relatively
complex decisions if they are expressible in quan­
titative terms, but it must be told how to make the
decisions and what to do in each alternative. We
can say to a computer, in suitable language, "If a
man's deductions exceed his gross pay, omit as
many deductions as necessary; the order in which
to omit them is specified in the following table,
in which the first deduction is the least crucial."
We cannot say, "If anything unusual comes up,
do what you think is best."

THE NATURE OF DATA PROCESSING 3

When the task has been properly defined in terms
of what is to be done, the next step is to decide
how to do it with the computer. In this step the
processing is expressed in terms of operations that
can .be carried out with the available computing
equipment. One of the primary tools of this step
is the flow chart, which shows the sequence of op­
erations in graphic 'form. Several flow charts
appear in Sections 1.3 and 1.4.

The next step is programming. This includes
two activities, one of which is block diagramming.
A block diagram is a detailed flow chart, showing
in greater depth exactly what is to be done at each
stage of the computer processing. The other ac­
tivity in programming is coding, which is the pri­
mary subject of this book.

The fundamental problem is this: The "lan­
guage" in which the computer can accept "instruc­
tions" is very different from the language in which
we ordinarily describe data processing. One way
or another, the procedure to be followed must .be
translated into the computer's language. For m­
stance, we say, "Summarize sales by salesman and
district." The computer understands instructions
like "Add these two numbers," "Go to the print
steps if these two numbers are not the same," or
"Read a card and place the information in the card
input area."

Coding is the process of stating a procedure in
a language acceptable to the computer. (The word
comes from the fact that the computer's basic lan­
guage consists of instructions that are written in
a "coded" system of numbers and letters.) In few
cases are we required to do the entire job of trans­
lation, all the way to the final form of the instruc­
tions as they will be obeyed ("executed") by the
computer. Usually, we write instructions in a sym­
bolic form that is rather similar to the machine's
language but considerably more convenient for us.
The last step of the translation is then performed
with the machine's assistance. In other situations
we are able to write the machine procedure in a
language quite similar to ordinary English, with
the bulk of the translation being done with the aid
of a special computer program (set of instructions).

Programming and coding involve so much de­
tailed work that most programs do not operate
correctly when first tried. Thus it is necessary to
debug the program (locate and correct the errors)
and to test it with test cases to be sure that it
properly processes the data. All of this goes under
the name of program checkout.

4 IBM 1401 PROGRAMMING

One more activity remains before the program
is ready to be used: the master file must be pre­
pared. This usually requires converting the file
from the form in which it was used with the pre­
vious manual methods. File conversion can be
a sizable task in itself and one that often must be
started well before the program is completed.

REVIEW QUESTIONS

1. What are some of the basic data processing opera­
tions?

2. Give an example of source data.
3. What is a file? Record? Master file? Transaction

file? Give examples.
4. Define sorting and merging.
5. A computer can make decisions, under certain cir­

cumstances. Give two qualifications to this general state­
ment.

6. What is the difference between programming and
coding and between flow charting and block diagram­
ming?

1.3 An Example of Sequential File
Processing

Some of the ideas introduced in Section 1.2 may
be clarified by considering a typical example of
data processing.

A certain company has a system of sales dis­
tricts, each district employing several salesmen.
For each sale a transaction record shows the follow­
ing:

1. Product number.
2. Quantity.
3. Salesman number.
4. District number.

These transaction records are prepared in the
form of punched cards at the data processing cen­
ter from reports sent in from the districts. Records
such as these, with certain other information in­
cluded, would ordinarily start a whole chain of
data processing: instructions would be prepared
for the shipping department; the customer's ac­
count would be charged with the amount of the
purchase, less discounts; the inventory file of fin­
ished goods would be updated. For our purposes
here, however, we shall consider only one aspect of
the total data processing activity based on these
records: the preparation of sales statistics.

For various purposes it is desirable to obtain

sales figures summarized monthly in several classi­
fications:

1. Total sales of each merchandise item for the
month.

2. Total sales of each salesman for the month.
3. Total sales of each district for the month.
4. Total sales of the company for the month.

Before outlining the sequence of· operations re-
quired to produce these reports, we must consider
how the characteristics of the master file affect the
planning. The master file for this simplified prob­
lem is needed only to get the unit price for each
product; in a full-scale application it would do
much more. Our master file contains a record for
each product, each record showing a product num­
ber and the price of one unit of that product. The
most important consideration for our purposes is
that the file is in product number order. The rec­
ord for the product with the smallest product num­
ber is first in the file, the record for the product with
the next larger product number is next, etc.

The first computation is to get from the master
file the unit price of each product sold. This means
that for each transaction record we must look up
the unit price, which could be done by searching
the master file once for each transaction record.
This can be done if the master file is stored in a
form that makes it convenient to get at any record
with a minimum of delay, the subject of the next
section. However, when the master file is stored
on cards or magnetic tape, this approach has seri­
ous drawbacks. The difficulty is that to find any
one record in a file of cards (or on tape) it is
necessary to inspect every record until the desired
one is found. With this kind of equipment it is not
possible to thumb through a deck of cards until
the approximate area is located and then search
in detail for the correct card; it is necessary to
read every card in sequence.

This is the basis of the term sequential access
file: each record is available only in the order in
which it appears as the file is read in sequence. To
be explicit, this means that the first record in the
file is available with little delay, but to get the last
record requires reading the entire file. This is con­
trasted with a random access file (see Section 1.4),
in which any record is available just about as
quickly as any other.

The fact that our master file is the sequential
access type determines to a considerable extent
how the processing must be done. We clearly do

not want to have to read the master file once for
each transaction card. Instead, we will put the
transaction file into the same sequence as the mas­
ter file and then get all the information we need
from the master file in one pass, that is, in one
reading of it.

The resequencing of the transaction file is called
sorting. Since our transaction file is a deck of cards,
it can be sorted with a card sorter, as described a
little more fully in Section 2.2. When this opera­
tion is completed, the deck of sales cards will be in
the same sequence as the master deck, that is, the
sales card with the smallest product number will
be at the front of the deck, etc. There may be
more than one card with the same product num­
ber, of course: several customers no doubt will have
bought the same item.

Recall that what we are trying to do at this
point is to get the unit price of each product from
the master file so that the total price of each sale
can be computed (the sales cards give only the
number of units sold). There are several ways of
doing this; the choice depends on the characteristics
of the computer to be used. We shall assume that
this job is to be done on a computer that can read
only one deck of cards and has no magnetic tapes
but can separate the cards into two stacks after
reading them. This corresponds to the equipment
available on an IBM 1401 Card System.

With the master and detail (transaction) decks
now in the same sequence, we use the card collator
to merge them. By this operation, each detail card
is placed behind the master having the same prod­
uct number. Several things can happen when this
is done.

l."There may be unmatched masters, that is,
masters for which there is no corresponding detail.
This means simply that the particular product was
not sold in the month. With the collator we have
the choice of including such unmatched masters in
the merged deck or of selecting them to fall into
a separate pocket. We shall leave them in to
avoid having to put them back later. This will
require a little extra work in the computer program
but nothing very difficult.

2. There may be unmatched details, that is, sales
cards with product numbers not in the master file.
This means that a product number was written or
punched incorrectly. We cannot process these
cards, and the collator must be set up to select them
into a separate pocket. The error cards must be

THE NATURE OF DATA PROCESSING 5

Master File

Product Unit Product Unit
Number Price Number Price

1120 6.90 3495 2.70
1190 4.32 4192 8.09
1200 10.60 4377 21.90
1213 25.50 4992 10.20
1655 .80 5009 8.00
1656 18.00 5062 1.47
2441 2.57 5100 7.75
2702 74.00 5211 43.50

Figure 1.1a. Sample master file for sequential file processing

example.

corrected and either reinserted in the deck or
saved until the report for the next month is run.
We shall do the first. If there are only a few
error cards, they can be inserted by hand; if there
are many, another collator run can be used to in­
sert them.

3. It could happen, in a mixup in card handling,
that one or both of the decks are out of sequence.
The collator can be set up to check for this possi­
bility and stop if an error is detected. Such errors
are not an everyday occurrence, but since they can
happen and since they are fairly easy to check we
may as well do so.

Before describing the rest of the procedure, we
may review what has been covered so far in terms
of some sample data. In a typical application of
this type, the master file would contain perhaps
10,000 records and there might be 20,000 sales' cards
in a month. The sample data is based on a master
file of 16 records and also 16 sales cards, as shown
in Figures l.la and l.lb.

The first step, sorting the detail deck, puts the
details into the order shown in Figure 1.2. The
merged deck is shown in Figure 1.3, in which aster­
isks are written after the master file product num­
bers for clarity. Note that the master card ap­
pears in front of its associated detail cards.

When the two decks are merged, the sales card
for product number 4190 will fall out as an un­
matched detail. Suppose that investigation shows
that product number to have been incorrectly
punched; it should have been 1190. After the card
has been repunched, it can be placed anywhere in
the group of sales cards for product 1190; it is
shown in Figure l.3 at the front of the group.

6 IBM 1401 PROGRAMMING

Now we are ready for the first calculation step.
We must get the unit price of each product, extend
the price for each sale (multiply unit price by the
number of units sold), summarize the total sales
dollars for each product (add up the price of each
sale), and summarize all sales for the month. This

Product
Number

4992
4192
1190
1213
1655
4190
4992
5062
1655
1213
5062
1190
1190
1655
4192
1656

Detail File

Quantity Salesman District

8
12
55
2

80
100

11
20
20

1
75
30
16

150
7
4

31
20
32
20
31
41
10
6
6

41
32
10
61
61
32
6

3
1
3
1
3
2
1
2
2
2
3
1
3
3
3
2

Figure 1.1b. Sample data (unsorted) for sequential file processing
example.

Product
Number

1190
1190
1190
1213
1213
1655
1655
1655
1656
4190
4192
4192
4992
4992
5062
5062

Quantity Salesman District

55
30
16
2
1

80
20

150
4

100
12
7
8

11
20
75

32
10
61
20
41
31

6
61

6
41
20
32
31
10
6

32

3
1
3
1
2
3
2
3
2
2
1
3
3
1
2
3

Figure 1.2. Sorted detail file for sequential file processing example.

Product
Number

1120 *
1190 *
1190
1190
1190
1190
1200 *
1213 *
1213
1213
1655 *
1655
1655
1655
1656 *
1656
2441 *
2702 *
3495 *
4192 *
4192
4192
4377 *
4992 *
4992
4992
5009 *
5062 *
5062
5062
5100*
5211 *

Unit price
or

Units Sold Salesman District

6.90
4.32
100
55
30
16

10.60
25.50

2
1

.80
80
20

150
18.00

4
2.57

74.00
2.70
8.09

12
7

21.90
10.20

8
11

8.00
1.47

20
75

7.75
43.50

41
32
10
61

20
41

31
6

61

6

20
32

31
10

6
32

2
3
1
3

1
2

3
2
3

2

1
3

3
1

2
3

Figure 1.3. Merged deck for sequential file processing example.

is now easily done. As the combined deck is read
by the computer, the unit price for each product
can be obtained from the master card and stored
for computing the price of each sale. As each sales
card is read, the number of units can be multipled
by the unit price and this sale price added to the
total of sales for the product. For later operations
a new detail card which contains all of the old in­
formation plus the extended price of each sale must
be punched. When all of the sales cards for one
product have been read and extended, the total
sales for that product must be printed. When all
cards have been read, the total sales for the month
is printed. Finally, as the cards are read, the orig­
inal details (which may now be discarded) should

be stacked separately from the masters (which
must be saved for use next month).

When this first computer operation is completed,
the master deck will be unchanged. The new de­
tail deck will be the same as the original except that
the price of each sale will be punched on each sales
card. The product summary will be as shown in
Figure 1.4.

Before proceeding with a description of the re­
mainder of the processing (the summary of sales
by salesman and district), we may investigate a
way of presenting graphically the steps so far
covered.

This may be done with a work-flow chart, or
simply flow chart. A flow chart is a graphic rep­
resentation of the complete system in which the
input data is converted to final documents. In
other words, a flow chart shows what the major
processing steps are, without detailing how they
are done; detailing is the concern of a block dia­
gram, to be discussed later.

A flow chart uses lines and arrows to connect
symbols that stand for documents and operations.
Some of the standard symbols are shown in Fig­
ure 1.5. They are most easily drawn with the IBM

Charting and Diagramming Template. A source
document is any representation of information that
becomes input to a data processing operation. In
our example the only source documents are the
sales reports. The symbol shown for a file applies
only to a card file, of course; the file concept is
broader than its card implementation, as we shall
see.

The card punch is naturally a device for punch­
ing holes in cards. In our example it happens that
only numbers are punched; most card punches can

Product Total
Number Sales

1190 868.32
1213 76.50
1655 200.00
1656 72.00
4192 153.71
4992 193.80
5062 139.65

1703.98

Figure 1.4. Summary of sales by product in sequential file proc­

essing example.

THE NATURE OF DATA PROCESSING 7

Source
document

I Card file

(Card

Figure 1.5. Some of the standard flow charting symbols and their

meanings.

also punch letters and certain other symbols. The
card verifier looks about like the card punch but
has no mechanism for punching holes. Punched
cards are run through the verifier, with the verifier
operator pressing the keys in the same way (hope­
fully) as the punch operator did. When a key on
the verifier is pressed, the equipment checks that
the key corresponds to the hole punched in that
column. If the entire card proves to be correct, it
is notched at the end to show that it has been veri­
fied. If the card is wrong or the verifier opera tor
makes a mistake, a red light is turned on. The veri­
fier operator can now try again; if the card is
actually wrong, it is notched at the top to show
that it must be repunched. It is, of course, possible
that the two operators will make the same mistake,
but this is sufficiently unlikely to make the tech­
nique acceptable in most situations.

With a flow chart we can represent the operations
in our example that have been described so far, as
shown in Figure 1.6. It may be seen that the
pictorial representation is much easier to follow
than the verbal description, once the basic concepts
are understood.

With the simplification made possible by the
tool of the flow chart, the rest of the procedure is
much easier to describe. Weare required to pro­
duce a summary of sales by district and salesman.
To do so, the new details must be resorted, so that

8 IBM 1401 PROGRAMMING

Unit price
cards

Sales
reports

1401

Original
sales cards

(Discard)

Sales summary
by product

(To next stage)

Figure 1.6. Flow chart of sequential file processing example,

through the sales summary by product.

all the cards for one district are together; within
each district, all the cards for each salesman must
be together. After sorting, another computer run
produces the summary required. As the cards are
read by the computer, the sales total for the month
is computed again. This figure obviously should
be the same as the total at the end of the previous
summary to give a check on the correctness of the
processing. A number such as this is often called
a control total; the term is also used to denote a
total that has no other purpose than that of check­
ing accuracy.

The flow chart of this part of the processing is
shown in Figure 1.7. The new details, after they
have been sorted by salesman and district, appear
in Figure 1.8, and Figure 1.9 is the sales summary
by salesman and district.

This discussion has said nothing about how the
various computer operations are to be carried out.
Weare still not prepared to go into the details of
this matter, but we can at least consider the over­
all picture of what the major computer operations
are and their sequence. For this purpose it is con­
venient to employ a block diagram, which is con­
siderably more detailed than a flow chart. A flow
chart outlines the major steps in the processing as
the work "flows" from machine to machine. A
block diagram, on the other hand, shows how the
task of each machine is accomplished. In this book
our primary concern is the computer, and block
diagrams are used to give the sequence of data
movements, computation, and decisions on which
the computer is operating.

The symbols used in flow charting are also used
in block diagramming but with different meanings.
Figure 1.10 explains the meanings attached to the
symbols needed in this example.

Figure 1.11 is a block diagram of the computer
operation in the second part of our example, the

1401

Sales summary
by district

and salesman

Figure 1.7. Flow chart of sequential file processing example, from

new sales cards to sales summary by district and salesman.

summarization by month, district, and salesman.
The first step is to read a card. This means that
the information on the card is copied into the
storage of the computer, where it is available for
later operations. Some of this data is then copied
in other places in storage so that it will be available
after the data from another card has been copied
into the storage areas once occupied by the data
from the first card. These data transfers are shown
in three different boxes in the block diagram be­
cause some of them are used at different times later.
An arrow, in this connection, means "goes to."

When the first card has been read and the data

Product Sales- Sales
Number Quantity man District Price

1190 30 10 1 129.60
4992 11 10 1 112.20
1213 2 20 1 51.00
4192 12 20 1 97.08
1655 20 6 2 16.00
1656 4 6 2 72.00
5062 20 6 2 29.40
1213 1 41 2 25.50
1190 100 41 2 432.00
1655 80 31 3 64.00
4992 8 31 3 81.60
1190 55 32 3 237.60
4192 7 32 3 56.63
5062 75 32 3 110.25
1190 16 61 3 69.12
1655 150 61 3 120.00

Figure 1.S. Sorted new details for sequential file processing ex-

ample.

Salesman District Total

10 241.80
20 148.08

1 389.88
6 117.40

41 457.50
2 574.90

31 145.60
32 404.48
61 189.12

3 739.20
1703.98

Figure 1.9. Summary by district and salesman.

THE NATURE OF DATA PROCESSING 9

<>
CJ
Input and output;
card reading, card
punching, printing

Decision

Data movement
or computation

Figure 1.10. Some of the standard block diagramming symbols

and their meanings.

Add $ to
district and
month totals

$-' month total

Store district 41=
$ __ district total t-+----------,

Store man #
$-'man total

Add $ to
month total

Add $ to man,
district, and
month totals

Figure 1.11. Block diagram of the computer run to produce a

sales summary by district and salesman.

10 IBM 1401 PROGRAMMING

moved, another card is read. N ow a decision is
necessary. Does this card belong to the same sales­
man? If it does, then the price of the sale should
be added to each of the three accumulators that will
develop the three totals. If it refers to a different
salesman, then the number and total of the previous
man should be printed. N ext, a check must be
made to determine whether this card refers to the
same district. If it does, then the sales price should
be added to the district and month totals, the sales- .
man number stored as the one against which to
compare the next card, and the sales price stored
in the accumulation for that man. This will destroy
the previous salesman total, which has now been
printed. N ext another card is read and the process
is repeated. If the second test indicates a new dis­
trict, then the district total must be printed and the
other operations carried out as shown.

The student is strongly urged to follow through
this block diagram in detail, using the data pre­
sented previously. The test required to detect the
last card of the deck is not shown here; Exercise
3 considers this problem.

This example brings out a number of important
concepts, which may be summarized as follows:

1. The unit record concept. A punched card has
the important advantage that it moves as a unit;
this is not necessarily true of other storage media.
When the key is used to control sorting or collating,
all the other information on the card moves with
the key. For this reason, the conventional IBM

card equipment is often referred to as unit record
equipment. (Of course, this example can be done
entirely with unit record equipment; in fact, it is a
typical application.)

2. Control levels. The salesman number controls
one level of totals and the district number, a higher
level that includes the salesman totals. The total
by salesman is called a minor total, and the total
by district, a maj or total. There could also be one
or more intermediate levels of control; for example,
if each district had branches out of which the sales­
men worked.

3. Sequential file processing. When the files to
be processed can be done only sequentially, it is
necessary to arrange all of the files into the same
sequence before proceeding. This becomes the
basic consideration in organizing the processing.

4. Batch processing. Since it is necessary to
read the entire master file, including those records
not affected, in order to process even a few trans-

action records, it is necessary to save the trans­
actions until a batch has been accumulated. In
many applications, as in the example above, this
is a natural mode of operation; in others, it is a
decided disadvantage, and we turn to the random
access file storage methods.

REVIEW QUESTIONS

1. Describe how you would look up a telephone num­
ber if the directory had to be "processed" sequentially.
Wha t is the "key"?

2. Why would it not be feasible to have several sales
reports punched on each card of the transaction deck?

3. In the example there can be several details with the
same product number. Could there ever be several
masters with the same product number?

4. What would happen in the merging operation if the
last card of the sorted transaction deck were inadver­
tently placed at the beginning of the deck?

5. In the sample data for this example there was a
mispunched sales card which was detected because there
was no master card corresponding to the incorrect prod­
uct number. Suppose the erroneous product number had
been the same as some master card product number.
Would the error have been detected?

6. Suppose that in. the various card-handling opera­
tions between the two summarization runs one sales card
got lost. What would signal the error?

7. If a salesman could report sales in more than one
district, could the salesman and district summaries be
produced in one summarization run?

1.4 An Example of Random Access File
Processing

The outstanding feature of sequential file proc­
essing is that the entire file must be read each time
any transactions are processed against it. This, in
turn, forces us to sort the transactions so that the
master file need be read only once. Furthermore,
it is necessary to accumulate the transactions into
batches of fair size before doing any processing in
order to reduce the number of times the entire file
must be read.

In many cases the nature of the job is such that
these factors are not actually restrictions. For
instance, in the example of the last section, it is
completely natural to accumulate a month's sales
cards before running the monthly summary. The
effort of sorting is more than compensated by the
economy of sequential file storage media.

In other situations, however, the application de-

mands that records be kept on a current basis or
that the information be more readily available than
it usually is with a sequential file. In such cases
the random access file becomes necessary.

For an illustration, let us consider the problem
in the last section but with two additional require­
ments. Besides preparing monthly sales statistics,
we are required to keep records on the inventory of
each product and to be able to answer on short
notice several kinds of inquires on inventory status
and sales position.

As before, there is a master file consisting of one
record for each product, but now the records con­
tain more information. Besides the product number
and the unit price, each record contains the num­
ber of units available for sale and the accumulated
sales amount for the month. There is also a sepa­
rate record for each salesman and each district
showing sales for the current month.

As the sales information is received at the data
processing center, cards are punched and processed
against the master file immediately, perhaps as
often as several times a day. The processing of a
sales card now consists of the following steps:

1. Locate the master record for the product num­
ber.

2. Determine whether there is enough of the
item in stock to be able to fill the order. If so,
proceed with the processing; if not, write an out-of­
stock notice.

3. Subtract the number of units sold from the
number of units in stock.

4. Extend the price, that is, multiply the number
of units by the unit price.

5. Add the total sales price to the accumulated
sales of the product for the month, which is now also
in the master record.

6. Write the modified master record back in the
file.

7. Locate the record for the salesman who sold
the order, add the total sale price to the total of
his sales for the month, and write the updated
record back in the file.

8. Do the same for the district in which the
salesman works.

This procedure is shown in the block diagram
of Figure 1.12. The only new technique here is the
location of the proper master record. How this is
accomplished depends on the physical device used

THE NATURE OF DATA PROCESSING 11

Subtract units
from inventory

Extend price

Add sales price
to sales for

month

Add sales price
to total for
salesman

Add sales price
to total for

district

Figure 1.12. Block diagram of the computer operations in up­

dating a sales statistics file, using a random access storage device.

to store the master file, a subject to which we shall
return in Chapter 9.

So far we have considered the handling of the
sales cards. The complete system must obviously
be able to do considerably more. If it is to keep
inventory records, there must clearly be some way
to enter information on the addition to stock of
items manufactured by the company or received
from suppliers. This can easily be done by setting
up a card rather similar to a sales card-that is,
containing a product number and a number of
units-but which also contains a code that will be
recognized by the computer program as indicating
an addition to stock rather than a sale.

There must, as before, be a procedure for produc­
ing sales summaries. Besides the monthly sum-

12 IBM 1401 PROGRAMMING

mary, however, it is now possible to provide a
summary on demand at any time during the month.
This would not ordinarily be a complete report but
only the statistics on selected items. Such spot
summaries could be requested by other specially
coded cards similar to the sales card, showing the
product, salesman, or district for which a summary
is desired.

It goes almost without saying that this is a
considerably oversimplified example. The inven­
tory portion, in particular, does not take into ac­
count many factors that would be required in any
actual application.

Comparing this procedure with the sequential
file processing example, the following characteristics
stand out:

1. Sales reports can be processed as quickly as
they are received rather than as batches are ac­
cumulated, since only the correct master records
need be read. The master file information is thus
always up to date.

2. Information from the master file is available
on demand, with little delay.

3. No sorting of the transactions is required.

Why, then, are random access files not univer­
sally used? The simple answer is that the same
capacity costs more in a random access storage
medium than in a sequential access medium. Fur­
thermore, many applications have little need for
hourly or daily availability of the latest informa­
tion; for them, a random access file represents a
pointless expense.

In short, when immediate access to master file
information is not needed, a sequential file is per­
fectly adequate and is less expensive. When im­
mediate access is essential, a random access file
provides conveniences that more than compensate
for the additional cost.

REVIEW QUESTIONS

1. What is the most important characteristic of a
random access file?

2. Would it introduce any complications in this ex­
ample if a salesman could work out of more than one
district?

3. In this example we did not mention error checking.
This is partly because there are fewer card-handling
steps where errors could be made, but at least one of the
error checks in the sequential file version can still be
made. What is it?

4. At the end of each month a sales summary for the
month would be produced. After doing so, what should
be done to the file information to prepare for accumulat­
ing the next month's statistics?

EXERCISES t

*1. In the block diagram of Figure 1.11 insert the addi­
tional operations necessary to produce a count of the
number of sales made by each salesman.

2. In the block diagram of Figure 1.11 insert the oper­
a tion necessary to sequence-check the detail cards on dis­
trict number-that it, determine that no district number
is smaller than the preceding one.

*3. Suppose that after reading the last card of the
deck an indicator is automatically turned on. Insert in
the block diagram of Figure 1.11 the operations necessary
to test such an indicator and to use the result of the test
to wrap up the processing when the last card has been
read. This will require printing all three totals, including
now the total for the month.

4. Draw a block diagram of the computer operations
in the summarization by product in the sequential file
version. Assume that there is some simple way to dis­
tinguish between a master and a detail, for example, a
decision box which asks "master or detail?" following the
reading of a card.

Suggestions. Draw the block diagram first without any
consideration of how to start or end the process. This
will be the heart of the run: obtaining the unit price of
each product, extending each detail, and getting the sum­
mary for each product. To do this much, it will be
necessary to use the detection of a new master card to
cause the printing of the summary for the preceding
product and to store the new unit price for extending the
next details. Be sure that nothing is printed when two
masters in succession are read and that after printing
each summary the total storage area is cleared.

After this part has been worked out, it should not be
too difficult to add the operations necessary to start
properly and to make use of a last card test for stopping.

*5. Suppose that the sales card in the sequential file
in this example had only the salesman number and no
district number. There is an auxiliary master file that
gives the district in which each salesman works; this file
is in salesman-number sequence. Extend the flow chart
of Figure 1.6 to include the steps necessary to punch new
sales cards with district numbers.

t Answers to starred exercises are given at the end of
the book.

2. INTRODUCTION TO COMPUTING
EQUIPMENT

In Chapter 1 we surveyed some of the
methods and concepts used in electronic data
processing. In this section we introduce the
"hardware" that carries out these operations.
After these preliminaries, the next chapter
begins the discussion of specifying the nature
of the desired processing to the data proc­
essing system.

2.1 The IBM Punched Card

The starting point for entering data into
most electronic data processing systems is
the punched card. vVe must therefore be­
come quite familiar with the way punched
cards are used to contain and transmit in­
formation.

An IBM card is a piece of light flexible
cardboard 7% wide and 314 in. high. It is
composed of 80 vertical columns, numbered
from left to right. Each column may con­
tain one of the digits 0 to 9, the letters A to
Z, or any special characters such as the
dollar sign or per cent sign. There are 12
vertical punching positions in each column,
of which the punching positions for 0 through
9 are identified· by printing on the card.
Numerical information is recorded on the
card by punching a single hole in a given
column in the position representing that
digit. For example, a single hole punched
in the 2 position always means the digit 2
to IBM machines.

Alphabetic information is represented by
a combination of two punches, a numerical

punch and a zone punch. Positions 1 to 9
are referred to as the numerical positions.
There are three zone punching positions:

12 zone-at the top edge of the card.
11 zone-just below the 12 zone position.
Zero zone-just below the 11 zone position.

A punch in the 12 zone position is some-
times called a Y punch and a punch in the 11
zone position is sometimes called an X punch.
This terminology has nothing to do with the
representation of the letters X and Y, and
because of the possible confusion it is not
used here. The zero zone position is the same
as the numerical zero and is labeled on the
card. The 12 and 11 zone positions are not
labeled, since this part of the card is usually
set aside for the printing of headings.

The codes (combinations of punches) for
the letters of the alphabet are shown in
Figure 2.1. To understand the basic idea of
this coding, it may be helpful to note that
the letters A through I are made up of a 12
zone punch and one of the digits 1 through
9; the letters J through R are made up of
an 11 zone punch and one of the digits 1
through 9; the letters S through Z are com­
posed of a zero zone punch and one of the
digits 2 through 9. The first letter repre­
sented with a zero zone is composed of a
zero zone and a numerical punch 2, not 1.

The combination of a zero zone and a
numerical 1 is used to represent the symbol /
(slash). The various other special symbols
are made up either of a 12 zone or an 11

13

14 IBM 1401 PROGRAMMING

A 12 and 1 J 11 and 1
B 12 and 2 K 11 and 2
C 12 and 3 L 11 and 3
D 12 and 4 M 11 and 4
E 12 and 5 N 11 and 5
F 12 and 6 0 11 and 6
G 12 and 7 P 11 and 7
H 12 and 8 Q 11 and 8
I 12 and 9 R 11 and 9

S
T
U
V
W
X
Y
Z

o and 2
o and 3
o and 4
o and 5

. 0 and 6
o and 7
o and 8
o and 9

represented by each column. For cards produced
by some means other than a card punch, the char­
acters represented by selected columns can be
printed at the top of the card by a machine called
an interpreter .

Figure 2.1. Punched-card coding of the letters of the alphabet.

Some cards have a distinctive colored stripe or
have one of their corners cut. These features are
provided for ease of handling and recognition by
machine operators and have no meaning to the
computer. When it is necessary for any of the
various machines to distinguish between different
types of cards, the characteristic information must
be punched in the card. This may be done in many
ways. One of the most common is the use of a 12
or 11 zone punch as an identification. For instance,
in the example in Section 1.3 the master cards
might have been identified by an 11 punch in some
column set aside for this purpose.

zone alone, or the combination 8-3 or 8-4 alone or
with the various zone punches. Thus an ampersand
(&) is represented by a 12 zone only; a minus sign
(-), by an 11 zone only. The per cent sign is
represented by the combination of an 8, 4, and
zero zone. The combinations used for all of the
standard allowable characters on an IBM card are
shown in Figure 2.2. The word character describes
any digit, letter, or special symbol that can appear
in one column of an IBM card.

There is no need to memorize these codes because
they are automatically punched by the depression
of the keys on the card punch and are read auto­
matically by the various IBM machines that can
accept information from cards. Furthermore, a
card punch can be equipped with a printing device
that prints at the top of the card the character

In normal usage columns on an IBM card are
grouped into fields. A field is composed of one or
more columns which together express one piece of
information. For example, Figure 2.3 shows a
card layout for the sequential file processing exam­
ple of Section 1.3. On this card columns 1 to 4
make up the product number field. The card punch
operator will always punch the digits representing
the product number in these columns, and other
card machines and the computer will be set up to
recognize that field as always representing the
product number.

UPPER RIGHT
CORNERCUT

~------------~~-=~ __ ----~~~~~~~~~~~~=-----77.~--~~~--__ /
012:'';Vi-56?89 ~illC])En5H 1 .. 1KU·iNOPfJ.RSTUVi,.lr~,:,;;~ B.;~~!! ~'. -/@(~~:u:

112 PUNCH 1111111111 I I I ~
111 OR X PUNCH PUZ~~~S 11I1III1I III II II II 1e i ~

o 0 0 0 0 0 0 10 0 0 0 0 0 I 011111 0
12345678 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980

11

22222221222222221222222222222221222222221222222212222222222222222222222222222222

33333331333333333133333333333333133333333133333331333333333333311113333333333333 ~
=<

44444441444444444414444444444444414444444414444444144444444444444444411114444444
DIGIT PUNCHES

5 5 5 5 5 5 515 5 5 5 5 5 5 5 5 5 515 5 5 5 5 5 5 5 5 5 5 5 5 515 5 5 5 5 5 5 515 5 5 5 5 5 515 5 5 5 5 5 5 5 5 5 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

66666661666666666666166666666666666166666666166666661666666666666666666666666666

71777771777777777 7 7 7 717 7 7 7 7 7 7 7 7 7 7 7 7 71717 777771777777717777777 7717177 7 77 7 7 77 7 7 7 7 7

BBBBBBBIBBBBBBBB8BBBBBIBBBBBBBBBBBBBBIBBBBBBBBIBBBBBBBIBBBBBBBBIIIIBBIIIIBBBBBBB

9999999199999999999999919999999999999919999999919999 9 9 919 9 9 999999999999999999999
1 2 3 4 5 6 7 8 91011121314151617181920212223242526 27 28 29 303132 33 34 35 36 37 3839 40414243 4445 46 47 4849 50 5152 53 5455 56 57 58 59 606162 6364 65 66 67 68 69707172 737475 7677 78 79 80

COLUMN
NUMBERS

LTHEDIGIT~
PUNCHES '------THE ALPHABET------'

Figure 2.2. Arrangement of information on an IBM ~ard.

L SPECIAL ~
CHARACTERS

2!
z
n
:I:

Z
G'l

~

J

Field assignments change from one job to the
next. The group of columns regarded as one field
in one job might contain parts of several fields in
another. There is nothing built into the various
card-handling machines that automatically regards
any set of columns as being a field. This assign­
ment must be planned by the user, and the various
machines must be instructed accordingly. On unit
record equipment field assignments are a matter of
proper use of wires on the control panel in each
machine. In the computer field assignments are
handled by programming techniques that we shall
investigate in detail, beginning in Chapter 3.

It often happens that data to be punched into a
field contains fewer characters than the number of
columns in the field. The most common way to
handle this problem is to punch as many zeros in
front of the data as are required to fill out the field.
For instance, in the card form of Figure 2.3 four
columns are set aside for the quantity. A quantity
of 25 would thus be punched as 0025. In other
situations it may be possible to leave these unused
columns blank, but it is usually necessary to do
one or the other consistently.

The handling of fields on a card provides us with
the first example of a most important concept in
data processing: how the equipment· handles data
depends on how the user wants the equipment to
handle it. Suppose, for instance, that the four
columns 20 to 23 contain punches representing the
number 4397. If we are simply given a card con-

/
SALES REPORT

>- ~ z

~
>-u ~ U :::l

0 <t.
~ :::l <

INTRODUCTION TO COMPUTING EQUIPMENT 15

taining these punches, we do not know whether
they represent 4397 bolts, $43.97, $4.397 tax per
$100 assessed valuation, or almost anything else.
The simple yet fundamental fact is that we have
no way of knowing what the digits mean without
knowing what they are intended to mean. It is the
responsibility of the person who is planning the
data processing operation to assign the desired
meaning to these columns; to provide instructions
that will tell the cardpunch operators how to punch
data in the field; to set up the card-handling equip­
ment so that the digits in the field will be handled
in the intended way; and to program the computer
so that the operations will be properly carried out.
For example, the computer operations required to
process $4397 properly may be considerably differ­
ent from those required to process $4.397. The data
processing equipment has no way of knowing any­
thing about the difference. It is our respons~bility
to plan and execute the various operations that
will make the equipment do what we want it to.
We shall see this principle appearing repeatedly
throughout our study, particularly in connection
with some of the things we do in the computer.

Another good example of this principle is in the
variation of meanings attached to an 11 punch in
a column. An 11 punch by itself in a column is
sometimes used to distinguish the card from other
types of cards in the same application. In another
situation it might cause a printer to print a minus
sign (-). In another situation it might be used

.~o 0 o oQ.ol .1 00 100 000
1234 5671 91011 1213 14151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980

_111 1111 111 11 1 1 1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1

2222 2212 221 22 222

3 3 3 3 3 3 3 3 313 31 333

4444 4444 444 44 444

5 5 5 5 555. 555 5 5 555

6 6 6 6 6 6 6 6 666 6 6 666

7777 7777 777 77 777

8888 8888 888 88 888

9919 9 9 9 9 999 99 999
1234 5678 91011 1213 1415 16 17 181920 212223242526 27 28 29 30 31323334 35 36 37 38 39 40 41424344 45 46 47 48 49 50 51525354 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71727314757677 78 79 80

Figure 2.3. Sample card form for the sales summarization example of Section 1.3.

16 IBM 1401 PROGRAMMING

in combination with a numerical punch to represent
one of the letters J through R. Again, it might be
used in the units position of a field in combination
with one of the digits 0 to 9 to signal that the
entire field is a credit amount, or, mathematically,
a negative number.

REVIEW QUESTIONS

1. Using only numerical punches, it would be possible
to represent letters by combinations of a single punch
in each of two columns. (This is actually done to repre­
sent letters within a number of computers.) What would
be the disadvantage of this scheme compared with the
zone and numerical punch method?

2. How is a zero numerical punch distinguished from
a zero zone punch?

3. Suppose that an 11 zone punch has been punched
over the least significant digit of a field to indicate that
the field is negative. If that column is interpreted (with­
out any special control panel wiring to separate the
punches), what will be printed at the top of the card for
that column?

4. Why must field assignments on cards be made early
in the design of a data processing procedure?

5. Give four possible meanings (in different situations)
of a punch in the 11 zone position in a column.

2.2 IBM 1401 Data Processing System
Components

Most computing systems are composed of a num­
ber of individual pieces of equipment that perform
some part of the complete data processing opera­
tion. We may begin to get a more complete pic­
ture of what is involved in electronic data process­
ing by considering briefly the major components of
a 1401 system.

Processing unit. Every computer system has as
its heart an assembly that does the actual arithme­
tic processing of data. The central processing unit
of the IBM 1401 is illustrated in Figure 2.4. The
central processing unit also contains the electronic
circuitry for carrying out arithmetic and other
operations on data, for interpreting the coded in­
structions that must be placed in storage to direct

Figure 2.4. The processing unit of the IBM 1401.

the operation of the system, and for controlling all
of the other parts of the system as a result of the
interpretation of these instructions. It also con­
tains the operator's console, which provides a cer­
tain amount of access to the information in the
computer and allows for manual control of the
system when it is being started.

IBM 1402 Card Read-Punch. This is the com­
ponent that reads the information from punched
cards; that is, it interprets the punched holes and
translates the information into the form in which
it is stored internally. The 1402 Card Read-Punch
is able to punch cards with the information that
results from internal processing operations. Both
reading and punching are controlled by the central
processing unit as the result of suitable instruc­
tions placed in storage by the programmer. This
unit is shown in Figure 2.5.

The read section, which is on the right in Figure

INTRODUCTION TO COMPUTING EQUIPMENT 17

2.5, is able to read cards at a maximum rate of 800
per minute. The actual speed is ordinarily less
than the maximum because complex processing
operations require more time than is available while
reading cards at top speed.

Figure 2.6 is a schematic diagram of the card
transport mechanism in the card read punch.
Looking at the read side, we see that a card is
actually read twice. No information is transferred
into storage by the first reading; the only action
here is to make a count of the number of holes in
each column of the card. When the information
is actually read into storage, at the second reading
station, a second hole count is made and com­
pared with the first. If the two are not the same,
reading stops and a red light comes on to signal
the error. Some checking is performed on all input
and output operations in the 1401, although the
hole count method obviously can apply only to
card reading and punching.

Figure 2.5. The IBM 1402 Card Read·Punch.

18 IBM 1401 PROGRAMMING

After the information on a card has been read
into storage, the card may then be directed to one
of three stackers. When no special action is taken,
the card will fall into the normal read (NR) pocket.
If it is desired to have the card stacked in one of
the other two pockets to which a card can be
directed from the read side, then a simple instruc­
tion can cause this stacker selection.

Figure 2.6 also shows the sequence of operations
for punching, which can be done at a maximum
speed of 250 cards per minute. A blank card from
the hopper moves past a blank station and is
punched, as directed by information from the cen­
tral processing unit storage, at the punch station.
As the holes are punched, a hole count is made on
each column and this hole count is verified at the
punch check station. As with reading, if the hole
count is not the same for every column, the machine
stops and a light comes on to signal the error.

After the card has moved past the punch check
station, it is stacked. If no special action is taken,
the card will stack in the normal punch stacker
(NP). An instruction can be used to cause the
card to stack in either of the stackers~next to the
normal punch. It may be noted that the stackers
labeled NP and 4 are available only to cards from
the punch side; the stackers labeled NR and 1 are
available only for cards that have been read; the
stacker labeled 8/2 can receive cards from either
side.

It is possible to install another reading station
at the position marked "blank" in Figure 2.6. This
is a special feature, called punch feed read, which
allows the programmer to read a card on the punch
side and then to punch new information back into
the same card.

IBM 1403 Printer. In addition to punching cards,
it is possible to get information out of the 1401
system with the printer shown in Figure 2.7. This

Punches

component is able to print a complete line of 100
characters at one time (it can be increased option­
ally to 132 positions). The maximum speed is 600
lines per minute. Each of the 100 (or 132) posi­
tions in a line can print anyone of 48 different
characters; these are the 26 letters, the 10 digits,
and 12 special characters.

The printing is accomplished with a chain as­
sembly illustrated schematically in Figure 2.8. The
alphabetic, numerical, and special characters are
assembled on this chain. As the chain travels in
a horizontal direction, each character is printed as
it reaches a position opposite a magnet-driven
hammer that presses the form against the chain.
Before a character is printed, it is checked against
the corresponding position in the print area of the
central processing unit storage to ,insure accuracy
of printer output.

The equipment described so far can be used as
a complete computing system, called the IBM 1401
Card System. However, in common with most
computers, the computing capacity of the 1401 can
be greatly expanded by the addition of a number
of other pieces of equipment. This means not only
that a considerable range of price and computing
power is available to the computer user, but also
that the user is able to begin with an inexpensive
system and expand it conveniently as his needs
grow.

There are many special features that may be
added to the basic system, more or less as minor
modifications. We shall consider a number of them
in the appropriate places in later chapters. The
following three optional system elements are more
extensive and, when appropriate to the application,
increase the computer power of the system by a
considerable amount.

Magnetic tapes. There· are two principal uses
for magnetic tapes in electronic data processing.

I Punch Read ~ead
,eck Select Select Reaa chei hopper

~ stacker stacker 1 L

- -:,maIUUUUUN=
Punch

rt'l Blank
station

punch read

NP 4 8/2 NR

Figure 2.6. Schematic representation of the card transport mechanism in the 1402 Card Read.Punch.

INTRODUCTION TO COMPUTING EQUIPMENT 19

Figure 2.7. The IBM 1403 Printer.

Type array

Armature
hammer
magnet

Paper form

Figure 2.8. Schematic representation of the chain printing mecha­
nism in the 1403 Printer.

The first is to increase the storage capacity of the
computing system. The amount of information
that can be stored in the central processing unit is
limited for economic reasons. When it is desired
to store large quantities of data for use during
processing, it is necessary to employ some form of
external storage. With the 1401, master files are
frequently stored on magnetic tapes. It is still
not possible to store the entire file within the cen­
tral processing unit, and the principles of sequential
file processing are much the same as with card
files. The big advantage is that information from
magnetic tape can be read and written a great deal
more rapidly than cards can be read and punched.
Furthermore, the same information on magnetic
tape can be read repeatedly. For instance, it is
possible to sort a file by using magnetic tapes with­
out the card handling that is required with a card
sorter.

20 IBM 1401 PROGRAMMING

The second principal use of magnetic tape is in
connection with input and output. On large com­
puting systems, such as the IBM 7080 and 7090, the
speed of reading cards and of printing results is
very much slower than the internal processing of
information. This means that it can become un­
economical to use such a large system for input and
output operations that utilize only a small fraction
of the computing power of the entire system. For
this reason it is preferable to transfer information
from punched cards to magnetic tape, using either
a special converter or a 1401 system, and then read
the input data from tape. This is justifiable, as
we have noted, in view of the cost of the large
system and in view of the fact that tape reading can
easily be 50 to 100 times as fast as card reading.
The same considerations apply to output. A large
system can write problem results on magnetic tape
at high speed and then go on to other work while
a converter or the 1401 is used to print the results
from the magnetic tape.

As indicated, there are special devices that have

no other function than to perform these card-to­
tape and tape-to-printer conversions. The 1401,
on the other hand, can be used to check the validity
of the input data as it is being read, develop con­
trol totals, and perform other operations ~hat are
described in later sections. Similarly, the large
computer system can write its output information
on magnetic tape in a condensed form at high speed.
The 1401 can then transform the condensed output
into a readable format and print it .

Some 1401 systems are intended primarily for
this sort of input-output conversion and editing.
The machine system intended primarily for output
can be obtained without a card reader and punch,
and one intended primarily for input can be ob­
tained without a printer.

All IBM computers use the same type of magnetic
tape. It comes on a 10Y2 -in.-diameter reel with
either 1200 or 2400 ft of tape. The tape itself is
a plastic ribbon Y2 in. wide and coated with a mag­
netic oxide material. A 2400-ft tape can be used
to record as many as 14 millfon characters. The

.. ==:.-.:

Figure 2.9. The IBM 729 (left) and 7330 (right) Magnetic Tape Units.

format in which information is recorded on tape is
considered in detail in Chapter 8.

Magnetic tape is read and written in a magnetic
tape unit, of which there are three types. The IBM

729 and 7330 Magnetic Tape Units are pictured in
Figure 2.9. There are two models of the 729 tape
unit, designated 729-1I and 729-IV. The differ­
ences between these three models are entirely in
the speed with which they can read and write infor­
mation. A tape may be written on one and read
on any of the others; thus we say that the tapes
produced by the three are compatible. (Tapes of
different manufacturers are generally not compati­
ble, although converters are available to translate
from one type of tape to another.)

From one to six magnetic tape units may be at­
tached to a 1401 system. Figure 2.10 shows a typi­
cal 1401 Tape System with card read punch, printer,
and three 729 tape units. The spectrum of availa­
ble computer systems runs from a few small com­
puters that do not permit tapes to large systems
that can handle more than 100.

IBM magnetic tape units are provided with a
number of automatic checking features to insure
the accuracy of transmission of data. Certain ad­
ditional information is automatically written on
the tape to provide part of this checking. This is
the subject of parity checking discussed in connec­
tion with tapes in Chapter 8. (A similar technique
is used within the central processing unit also.) A
second checking feature is provided by the presence
of a device to read the information recorded on tape

INTRODUCTION TO COMPUTING EQUIPMENT 21

immediately after it is written. This is the two-gap
head principle that is used on IBM tape units. The
third checking feature is concerned with the elec­
tronics of the reading process and is called dual
level sensing.

The IBM 1405 Disk Storage Unit. This storage
unit provides the random access bulk storage de­
scribed in Section 1.4. It is composed of either 25
(Modell) or 50 (Model 2) metal disks which are
coated with a magnetic oxide material. The total
capacity of a disk storage unit is either 10 or 20
million characters, divided into records o'f 200
characters each. This is in the approximate storage
capacity range of a single reel of magnetic tape.
However, there is a fundamental difference between
tape and disk storage, as we saw in the preceding
section.

Tape must be accessed sequentially; that is to
say, if the tape is positioned at its beginning, there
is no way to read a record in the middle of the tape
without passing over all of the intervening records.
At worst, this can cost several minutes. In com­
putations that are properly organized for the use
of tapes, this is not a disadvantage. However, if
it is necessary to have access to records on a random
basis in which access time in minutes would be
unacceptable, then the additional cost-per-charac­
ter-stored of a disk system becomes justified. Any
200-character record anywhere in disk storage can
be obtained in at most 0.8 sec.

Magnetic disk storage is considered external

Figure 2.10. A typical 1401 Tape System with Card Read-Punch, Printer, and three 729 Tape Units.

22 IBM 1401 PROGRAMMING

storage, as is magnetic tape. Transfer of informa­
tion between disk storage and the central processing
unit must be initiated by the execution of appropri­
ate instructions. This subject is treated in detail
in Chapter 9.

IBM 1407 Console Inquiry Station. With the
batch processing made necessary by the use of card
or tape files, all processing requirements are ac­
cumulated until the master file is to be processed.
With the random access bulk storage, however, it
is feasible to set up the system to accept inquiries
about the status of stored information on a random
basis whenever an operator requests it. This fa­
cility is provided by the console inquiry station,
which is illustrated in Figure 2.11.

When the console operator desires information
from the system, he presses a request button. With
appropriate instructions, the computer can detect
the presence of this request and call for it to be
typed in from the inquiry station typewriter. This
request must be in a prescribed coded format estab­
lished when the system was programmed. Instruc­
tions in the computer can then determine what in-

formation is desired, obtain it from disk storage,
and type it out.

It should be realized that such requests would
normally not be the major function of the computer.
The computer would be set up to carry out some
other primary function; the console inquiry requests
would be interruptions of the primary program.
Careful planning is obviously required to ensure
that the main program and the console program
do not interfere with each other in any undesirable
way.

This facility might be used in an inventory con­
trol application in which orders are processed on
a random basis as described in Section 1.4, when
it is necessary to determine whether some urgent
order can be filled. Facilities similar to the console
inquiry station are available for many computer
systems, but not all. In some cases the facilities
are considerably more elaborate.

It is useful to picture the various components in
terms of their relation to one . another, as shown
schematically in Figure 2.12. We see that th~
internal storage of the central processing unit is

Figure 2.11. The IBM 1407 Console Inquiry Station.

24 IBM 1401 PROGRAMMING

The reader should satisfy himself by experiment­
ing with an example that it is necessary to start
with the least significant digit, not the most signifi­
cant, remembering that after each sort pass the
entire deck is picked up from the pockets and re­
assembled. That is, it is not normal procedure to
keep the cards from each pocket separate after a
sort pass.

Sorting cards on an alphabetic control field is
somewhat more complicated, requiring either two
complete passes on each column or special circuitry
in the sorter. It is not frequently necessary to sort

cards on an alphabetic control field,- although it
is not uncommon to do an alphabetic sort on mag­
netic tape records, using the computer.

The card collator. The IBM 85 Collator is shown
in Figure 2.15. The collator has two card 'hoppers,
called primary and secondary, the primary hopper
being the one on the bottom. The collator has
four pockets which are used in a way somewhat
analogous to the stackers on the 1402 Card Read
Punch. If we number the pockets from 1 to 4 from
the right, cards from the primary feed can be moved

Figure 2.13. The IBM 83 Card Sorter.

the nerve center of the entire system. All input
and output devices communicate with it. It con­
tains the instructions that are used by the control
section of the central processing unit to determine
the actions of every part of the system. Any data
to be processed by the arithmetic section of the
central processing unit must be located in internal
storage, although the data may have been brought
to the internal storage from an external storage
device such as a magnetic tape unit.

REVIEW QUESTIONS

1. What is a third fundamental function of the central
processing unit of a computer besides storing data and
doing arithmetic processing?

2. Briefly, how might the procedure of the example in
Section 1.3 be modified if the computer has the punch
feed read feature?

3. How many milliseconds (thousandths of a second)
are required to print one line at full speed?

4. What are the two basic uses of magnetic tapes?
Would both of them likely be applicable to a computer
installation consisting only of an IBM 1401 system?

5. Assuming that an error in writing a tape will be
detected when the tape is read, what is the advantage in
detecting it immediately as the two-gap head does?

2.3 The Card Sorter and Collator

The card sorter. The card sorter, such as the
IBM 83 in Figure 2.13, can be used for a variety of
purposes, the most common of which is to sort a
deck of cards into ascending sequence on a key or
control field in the card. I t may be noted in the
figure that the sorter has a card hopper and 13
pockets, which are similar to the stackers on the
1402. As a card leaves the hopper, it moves past
the reading station. This consists of a brush that
can detect the hole punched in anyone of the 80
columns in a card. When the brush senses a hole
in the column, it directs the card to the corre­
spondingly numbered pocket. If there is no hole
in the column, the card is sent to the reject pocket.
The 83 sorter can feed cards at the rate of 1000
per minute.

The principle of the reading brush in the sorter
is similar enough to the reading devices in other
equipment that we may spend a moment examining
how it works. As the card passes through the
reading station, it passes over an electrically
charged contact roller. While the card is passing
over the contact roller, it passes under a brush. The

INTRODUCTION TO COMPUTING EQUIPMENT 23

Input

I Pr"o~~n-; ~it- - -
I
I
I Arithmetic
I section
I
I
I L _____ _

Console
inquiry
station

Magnetic
tapes

Output

-----------,
I
I
I

Control I
section I

I
I
I

______ J

Random
access
storage

Figure 2.12. Schematic representation of the relationships among

the components of a computer system.

brush may be set by the operator to read anyone
of the 80 columns in the card. Figure 2.14 shows
schematically the relative positions of the contact
roller card and brush. As the card passes through , ,
the machine, bottom or 9-edge first, the brush is
kept from touching the copper contact roller by the
card, which acts as an insulator. However, when
a punched hole is reached (a 4 hole in Figure 2.14),
the brush drops into the hole and touches the con­
tact roller. This completes an electrical circuit
that actuates an electromagnet to direct the card
to the proper pocket.

This same principle is used in all IBM card-read­
ing machines, except that other machines have 80
such brushes and read all columns simultaneously.
The result of c~mpleting the electrical circuit is,
of course, different in other machines.

The single brush in a sorter can, of course, read
only one column at a time. To sort a deck of cards
into ascending sequence on a control field of several
digits requires several passes of the deck through
the sorter. The first sort pass is made on the least
significant digit of the control field, after which
the cards are picked up from the pockets in se­
quence. This puts all the cards with a zero in the
least significant digit at the front of the deck, all
the ones next, etc. Then the deck is run through
the sorter again, this time sorting on the next most
significant digit, and so on. When the deck has
been sorted on all columns of the control field,
starting from the least significant and ending with
the most significant, the deck will be in sequence
on the entire control field.

24 IBM 1401 PROGRAMMING

The reader should satisfy himself by experiment­
ing with an example that it is necessary to start
with the least significant digit, not the most signifi­
cant, remembering that after each sort pass the
entire deck is picked up from the pockets and re­
assembled. That is, it is not normal procedure to
keep the cards from each pocket separate after a
sort pass.

Sorting cards on an alphabetic control field is
somewhat more complicated, requiring either two
complete passes on each column or special circuitry
in the sorter. It is not frequently necessary to sort

cards on an alphabetic control field, although it
is not uncommon to do an alphabetic sort on mag­
netic tape records, using the computer.

The card coHator. The IBM 85 Collator is shown
in Figure 2.15. The collator has two card hoppers,
called primary and secondary, the primary hopper
being the one on the bottom. The collator has
four pockets which are used in a way somewhat
analogous to the stackers on the 1402 Card Read
Punch. If we number the pockets from 1 to 4 from
the right, cards from the primary feed can be moved

Figure 2.13. The IBM 83 Card Sorter.

to pockets 1 or 2, and cards from the secondary
feed can be moved to pockets 2, 3, or 4. Thus the
cards from the two feeds can be merged, which is
the most common application of the collator.

The basic principle of the operation of the col­
lator may be better understood with the help of
Figure 2.16. It may be seen from this figure that
there are two sets of brushes in the path followed
by cards from the primary feed hopper. They are
identified as primary sequence read and primary
read. The secondary cards can be read at only one
station. There are 80 brushes at each of these
read stations so that all 80 columns can be read.

The heart of the collator's operation is based on
the selector unit and the primary sequence unit.
Looking first at the selector unit, we see that infor­
mation can go to it from both the secondary read
brushes and the primary read brushes. This selec­
tor unit is able to compare the information from

INTRODUCTION TO COMPUTING EQUIPMENT 25

\1.

" \)

\
'1.

Figure 2. I 4. Schematic representation of the relative positions of
the contact roller, card, and brush in a card·reading mechanism.

the two sources and determine whether the primary
field is less than, equal to, or greater than the in­
formation in the secondary field. The selector unit
output can then be used to control the stacking of

Figure 2.15. The IBM 85 Collator.

26 IBM 1401 PROGRAMMING

the cards in either or both feeds and to control the
feeding of additional cards from either feed. This,
in principle, is all that is required fora merging
operation.

The primary sequence unit receives information
from the two sets of brushes in the primary feed
path. It can thus be used to establish, for instance,
whether cards coming from the primary feed hopper
are in ascending sequence. The result of this com­
parison might be used to stop the machine if the
cards are discovered to be out of sequence.

With these basic functions, and with a control
panel by which the operator can select the columns
to be used to control them, a wide variety of opera­
tions can be performed.

REVIEW QUESTIONS

1. To sort a deck of cards into ascending sequence on
a control field, which column should be sorted on first?

2. Can the primary and secondary cards both be
sequence-checked in a collator?

2.4 System Components Used in Sequential
File Processing

Now that we have a little better picture of the
equipment that makes up the IBM 1401 Data Proc­
essing System, it would be well to take a new look
at the sequential file processing example in Section
1.3. Figure 2.17 is a flow chart of the sales sum­
marization application, drawn in a more informal
style.

This flow chart is largely self-explanatory, but

•..

we may note one or two of its features. After the
sales reports have been punched and verified and
the resulting sales cards sorted, they are merged
with the master file. We note, incidentally, that
the detail deck goes into the secondary feed of the
collator and the master deck into the primary. If
there are no unmatched details, the entire merged
file will appear in pocket 2; any unmatched details
would go in pocket 3. After the incorrect sales
cards have been corrected, they must be placed at
the proper point in the merged deck. Ordinarily,
there will not be many and they can be inserted by
hand. If, however, there are a great many of them,
they can be merged by another collator operation.
The merged deck is read by the 1402 Card Read
Punch and the sales summary written by the 1403
Printer. As the procedure has been described, new
sales cards are punched with the extended price of
each product ordered. These appear in the normal
punch pocket of the reader punch. The stacker
selection can be used to separate the master file
and the old sales cards as the merged deck is read.

The procedure is somewhat simpler when mag­
netic tapes are used. Figure 2.18 shows an informal
flow chart of this portion of the application with a
1401 Tape System. The sales reports must be
punched and verified as .before, but they can then
go immediately into the:c'omput~r; Iviagnetic tapes
can be used to sort the information on the cards
after the cards have been read. When this has been
done, the master file (which is now also on magnetic
tape) can be mounted on a tape unit and the sorted
sales records processed against the tape master file.
The sales summary will be printed in the same
fashion as before.

PRIMARY_,
READ / ,

\,,;;" "
I I'

" ' Si'o'. I ,' I,
SEQUENCE /.' / •• '

UNIT

PRIMARY
FEED HOPPER

Figure 2.16. Schematic representation of the card transport mechanism of an IBM Collator.

There is one difference here: we have not shown
the procedure for handling unmatched details. The
proper way to handle this problem would depend
somewhat on the total size of the job, the expected
number of unmatched details, and the use to which
the report is to be put. If in a normal month there

BLANK

CARDS ,

(NEW SALES

CARDS

SORT

(MASTER FILE

BB8

INTRODUCTION TO COMPUTING EQUIPMENT 27

are only a few incorrect sales cards, then the
value of the sales summary may not be diminished
significantly by simply ignoring them or by making
manual corrections on the report if one or two
large orders were omitted. If, on the other hand,
it should happen by some sort of consistent error

REPORT

/

SALES

~ PUNCH

1
~ VERIFY

UNIT PRICE

MASTER FILE

=

OLD SALES

CARDS

SALES

SUMMARY

Figure 2.17. Flow chart of the sales summarization example of Section 1.3, drawn in an informal style.

28 IBM 1401 PROGRAMMING

that a large number of sales cards are incorrectly
punched, then part of the procedure could be re­
peated to correct the sales summary. One way to
handle the problem would be to punch a card each
each time a sales record was found to be unmatched.

The handling of errors is highly relevant to any

SALES

REPORTS

PUNCH

VERIFY

discussion of the work of programming. It often
happens that these considerations require a signifi­
cant fraction of the total time to plan the job. To
a large extent such questions are properly the
concern of the system designer who establishes
error procedures before the work of the program-

SORT, MERGE, SUMMARIZE - 1401

(SALES

CARDS

SALES

SUMMARY

UNIT PRICE 0
MASTER TAPE

Figure 2.18. Flow chart of the sales summarization example of Section 1.3 using a tape system, drawn in an informal style.

mer begins. However, errors must always be of
some concern to the programmer. Furthermore, the
programmer who wishes to progress to systems work
must be highly conscious of their importance.

2.5 Representation of Information in a
Computer

Information in a computer is represented in a
form that requires each storage or processing ele­
ment to be able to take on only two distinct states.
For instance, one of the most common methods of
storing information within a central processing unit
is by the use of a magnetic core. A core is a
doughnut-shaped piece of a special ceramic ma­
terial about the size of a matchhead. It has certain
rather special magnetic properties that make it very
useful in the design and construction of a storage
unit. The storage unit operates so that each core
is always fully magnetized in one direction or the
other; a core is not allowed to operate so that its
magnetization is anywhere between these two ex­
treme conditions. Thus each core can be used to
represent exactly two symbols.

Since there are 48 different symbols (and some
other things) to be represented, a character must
be represented within the computer by a combina­
tion of individual cores. Six cores would be suffi­
cient for all of the characters because t1:lCre are 64
different combinations of the directions of magne­
tization. As we shall see a little later, each char­
acter in the 1401 is in fact represented by eight
cores, the extra two being used for other purposes.

It would be inconvenient to talk for very long
in terms of "combinations of directions of magne­
tization of magnetic cores." We therefore look for
some simpler way to describe the two directions of
magnetization. Actually any two convenient sym­
bols or terms would do: north and south, on and
off, yes and no, etc. The conventional way to repre­
sent the two states of a core is to call them zero
and one, but this is simply a convenience of ter­
minology. A device or condition which has exactly
two possible states is described as being binary.
It is then said to represent a binary digit, which is
commonly abbreviated bit. We speak of the
method of representing the 48 characters with six
bits as binary coding.

Figure 2.19 shows the binary coding of the 26
letters, 10 digits, and the 12 special characters. (A
few other combinations used within the computer

INTRODUCTION TO COMPUTING EQUIPMENT 29

Char- Binary Card Char- Binary Card
acter Code Code acter Code Code

0 1 00 1010 0 0 0100110 11-6
1 0000001 1 P 110 0111 11-7
2 0000010 2 Q 1 10 1000 11-8
3 1 000011 3 R 0101001 11-9
4 0000100 4 S 1010010 0-2
5 1000101 5 T 0010011 0-3
6 1 000110 6 U 1 01 0100 0-4
7 0000111 7 V 0010101 0-5
8 0001000 8 W 001 0110 0-6
9 1 00 1001 9 X 1 01 0111 0-7
A 0110001 12-1 Y 1 01 1000 0-8
B 0110010 12-2 Z 0011001 0-9
C 111 0011 12-3 & 111 0000 12
D 0110100 12-4 o 111011 12-3-8
E 1 11 0101 12-5 l::{ 1111100 12-4-8
F 111 0110 12-6 0100000 11
G o 11 0111 12-7 $ 110 1011 11-3-8
H 0111000 12-8 * 0101100 11-4-8
I 1111001 12-9 / 1010001 0-1
J 110 0001 11-1 , 1011011 0-3-8
K 110 0010 11-2 % 0011100 0-4-8
L 0100011 11-3 # 000 1011 3-8
M 1100100 11-4 @ 100 1100 4-8
N 0100101 11-5 blank 1 000000

Figure 2.19. Binary coding of the characters in a standard 1401

system.

are considered later.) We see in the figure that
only seven of the eight bits are shown; the eighth
is called the word mark bit and is discussed below.
The seven bits that are shown are seen to have con­
ventional designations: CBA8421. The four right­
most bits (8421) are called the numerical bits,
since they correspond in an approximate way to
the numerical punches in card coding. The BA
bits are called the zone bits for the same reason.
The C bit is the parity bit; we shall consider its
function after looking into the coding scheme dis­
played in Table 2.2.

We note that the decimal digits all have repre­
sentations in which the zone bits are both zero;
this corresponds to the fact that their card repre­
sentations have no zone punches. The letters A
to I have zone bits which are both 1, corresponding
in a way to a zone punch of 12. Similarly, the
coding of the letters J to R have zone bits of 10,
corresponding to an 11 zone punch. The letters
S to Z have zone bits of 01, corresponding to a
zone punch of zero.

30 IBM 1401 PROGRAMMING

The word parity is used here in the sense in which
it refers to oddness or evenness. A careful study
of Table 2.2 will show that the representation of
a character in the 1401 always involves an odd
number of ones. This is done to provide checking
of the accuracy of machine operation at certain
crucial points within the machine. The number of
ones in each character passing by these points is
checked to determine that it is odd. If it is not,
an error is signaled on the console and the machine
is stopped. Parity checking, therefore, provides a
very high degree of assurance that the machine is
operating correctly.

The eighth bit associated with each character in
core storage is called the word mark bit. We shall
have to give this matter very careful consideration
in later chapters. We may suggest for the time
being that the word mark bit is used to signal to
the computer the beginning and ending of fields of
information in the storage. We saw previously that
the assignment of card columns to fields is a matter
of interpretation that must be handled by the user
of the equipment; in the case of card machines this
requires proper wiring of control panels. The 1401
system, however, contains no control panels, and
some other technique must be used to signify within
the computer where fields begin and end. This is
the function of the word mark bits, which we shall
be considering in much greater detail in later sec­
tions.

Algebraic signs of fields within the computer are
indicated by the zone bits of the least significant
digit of the field. If the zone bits are 10 (one-zero),
the entire field is taken to be negative. If the zone
bits are any other combination (00, 01, or 11), the
entire field is taken to be positive. Unless there
are special reasons to handle the matter differently,
a positive field is ordinarily denoted by zone bits
of 11.

REVIEW QUESTIONS

1. Can you find a relationship between the card codes
for the special characters ($, %, etc.) and their binary
representations?

2. How many individual cores are required to store
1400 characters in core storage?

EXERCISES

* 1. These exercises concern a tape version of the first
summarization in Section 1.3. Suppose that the master
file is as before, except that it is on magnetic tape. Each
tape record gives the product number and unit price of
one product; the file is still in product-number sequence.
Assume that the sales records are on another tape. and
that they are already in sequence on product number.
Assume, for this exercise, that there are no unmatched
sales records and that there is only one sale per product.
There will be unmatched masters, however: there were
no sales of some products. Draw a block diagram of the
computer operations required to

a. read a sales record;
b. read master records until the one having the same

product number as the sales record is found.
c. When it is found, multiply the unit price (from the

master record) by the number sold; print the product
number and total price of the sale.

2. Extend the block diagram of Exercise 1 to process
the entire sales tape. This will require a relatively simple
modification of the flow chart to return to the reading
of another sales record repeatedly. To stop the process
when the sales tape has been completely read, use an
end-of-file test. After the last sales record, there is a
special mark on the tape that indicates that the end of
the file has been reached. The end-of-file indicator may
be checked each time the sales tape is read. The indi­
cator will not be turned on by reading the last record but
by trying to read the "next" record, which will instead be
the end-of-file mark. Thus when this mark is detected
the processing is finished (in this version of the problem).
All that need be done is to rewind the two tapes and
stop. (We are still assuming only one sale per product
and no unmatched details.)

3. Extend the block diagram of Exercise 2 to handle
the normal condition of many sales per product. Prob­
ably the simplest way to do this is to read successive
sales records, summarizing the units sold as long as a
comparison shows that sales records for the same product
are being read. When a new product number is detected,
save that sales record until after finding the master record
for the previous set of sales records and completing the
processing of that set. Then pick up again with the next
sales record (which has already been read, remember).
Hints. Be sure that the comparison of successive sales
records is started correctly; note that when the end-of­
file mark on the sales tape is detected the processing of
the last set of sales records has not been completed.

It may still be assumed that there are no unmatched
sales records. Do not try to test for errors in sequencing
of the two tapes and do not try to handle the possibility
of tape reading errors.

3. CODING FUNDAMENTALS

In order to process data with a computer,
it is necessary to provide the machine with
a program of instructions. A computer in­
struction is a command to the machine, ex­
pressed in a coded combination of numbers
and letters, to carry out some simple opera­
tion. Once the basic data processing task
has been completely defined, the job of cod­
ing is to put together a suitable set of these
elementary instructions to do the task.
When the set of instructions, which is called
a program or routine, is loaded into the in­
ternal storage of the computer, the instruc­
tions can be executed by the machine and
the desired data processing carried out. .

In this chapter we shall learn what a few
of the simpler instructions are and how they
operate. We must begin, however, by in­
vestigating the characteristics of the internal
storage of the computer.

3.1 Computer Storage and Its
Addressing

The storage of a computer (also sometimes
called the memory) is the part of the ma­
chine where instructions must be placed be­
fore they can be executed and also where
the data being processed by the instructions
must be placed. By this definition we refer
to internal storage; such things as magnetic
tapes and magnetic disks are external stor­
age. Instructions can 'be executed only from
internal storage, and the data currently being
processed must be put into internal storage
before any processing can be done on it.
When data in external storage is to be proc-

essed, it must first be read into internal stor­
age by the execution of instructions.

We saw that in working with cards it was
necessary to deal with groups of columns
called fields. We saw that the interpreta­
tion of a group of columns constituting a
field was completely under the control of
the user of the equipment. Similarly, in
working with the internal storage of a com­
puter we must work with groups of char­
acters, which are called words. A computer
word may be defined as any collection of
characters that is treated as a unit. For
instance, when the sales cards of Sections
1.3 and 1.4 are read into computer storage,
such things as the product number and the
unit price are words. An instruction is also
considered to be a word.

In many computers the number of char­
acters in a word is fixed by the design and
construction of the machine. A typical size
is 10 characters. Such machines are said
to have fixed word length. Other computers,
including the IBM 1401, permit words of any
length, from one character up to (in prin­
ciple) the size of the storage. Such ma­
chines are said to have variable word length.

In any computer, whether of fixed or
variable word length, it is necessary to be
able to identify every location in storage
where a word can be stored. For this pur­
pose an address is assigned to every word
location in a fixed word-length machine and
to every character location in the varjable
word-length case. The addresses start at
zero and run up to one less than the number
of storage locations.

Note carefully that an address identifies a
word location, not a word. For example, the

31

32 IBM 1401 PROGRAMMING

address 593 in the 1401 refers to a place in which a
character may be stored; it does not by itself tell us
what is stored there. A location that contains the
character A at one time may be used a moment later
to store the digit 7. We must always make a most
careful distinction between the address of a loca­
tion and the word or character currently stored at
the location identified by that address.

The internal storage of the 1401 is made up of
magnetic cores, as pointed out previously. The
smallest model of the 1401 is able to store 1400
characters of instructions or data; larger versions,
which store 2000, 4000, 8000, 12,000 or 16,000 char­
acters, are available. In this book we assume a
machine that can store 4000 characters. Each of
the 4000 positions is able to store anyone of the
48 digits, letters, or special symbols; it is also
possible to store 16 other symbols that have various
meanings within the computer. Thus each of the
4000 character positions is able to hold anyone of
64 different characters.

Each character position is composed of eight
magnetic cores, each core holding one bit. Six
cores are required for six bits of this character it­
self, as discussed in Section 2.5. One core holds the
parity bit, and the eighth is used for the word mark
bit. This last has the function of defining the
length of words within storage. Any character
position in which the word mark bit is one is
thereby identified as being the high-order (left­
most) position of a word. As we shall see, word
mark bits can be set (made one) or cleared (made
zero) by the execution of appropriate instructions.

When a data word is referenced by the computer,
it is always by the address of its low-order (right­
most) character position. The machine is built
so that addresses increase as the character posi­
tions are taken from left to right, which means
that the low-order character of a word has the larg­
est address. To summarize: when a character
position is addressed for data, the computer takes
the character in that position and all higher order
(but lower address) characters as comprising a
word, until it reaches a character with the word
mark bit on. If the character position that is ad­
dressed has its word mark bit on, the word will
consist of just that one character.

We shall see in Section 3.2, in connection with
instructions, that all storage addresses are written
as three 1401 characters. The first thousand ad­
dresses are written simply as numbers between zero
and 999. Addresses of 1000 and over are handled

in a special manner to fit into three characters by
the following scheme. The numerical parts of the
three characters are always the hundreds, tens, and
units digits of the address. The zone bits of the
high-order (hundreds) character are regarded as
the thousands digit, according to the following
pattern:

If the zone bits are then the thousands digit is
B A

0 0 0

0 1 1

1 0 2

1 1 3

Thus the binary coded form of the address 1234
would be

01 0010

1 2

00 0011

3

00 0100

4

(Word mark and parity bits not shown.) The ad­
dress 3789 would be coded

11 0111

3 7

00 1000

8

00 1001

9

Naturally, we do not want to have to show the
binary coded form of such addresses; instead, we
write them as though the high-order character
were the character represented by the combination
of zone and numerical bits. Looking at the table
on page 33, we see that the address 1234 would be
written S34 and 3789 would be written G89. The
complete pattern of three-character addresses is
shown in Figure 3.1, for addresses up to 3999.
Larger addresses are handled by using the zone bits
of the units digit in a similar system.

REVIEW QUESTIONS

1. What is the difference between"internal and external
storage?

2. Explain the following statement: instructions can
be stored in external storage but they cannot be executed
while in external storage.

3. What is the three-character form of the address
1643? 2700?

4. The eight character positions 678 to 685 contain
the characters 9 3 8 6 5 2 7 4; underlining a character
means that the character p~ition has a word mark. If
we address character position 684 for data, what word
will result?

3.2 Instructions

A computer instruction is an order to carry out
some elementary operation. Some instructions call
for information to be read into internal storage
from an input device, such as a card reader, or to
be written out to an output device, such as a line
printer. Other instructions perform arithmetic. A
third class moves and rearranges data within the
computer. A final group is used to make various
kinds of decisions based on data or results.

All instructions have an operation code, which
tells the machine what operation to perform. In
most computers each instruction also has a fixed
number of address parts, which in most cases spec­
ify where in storage to obtain data or place re­
sults. There may also be other parts having spe­
cial purposes in a particular machine.

In the 1401 every instruction has a one-character
operation code, which in a few cases is the entire
instruction. Most instructions also have one or
two address parts, of three characters each, and
some have a one-character d-modifier, with a va­
riety of functions depending on what the instruc­
tion does. An instruction in the 1401 may thus
be one to eight characters long, making it a variable
instruction length computer.

The general form of a 1401 instruction is

Operation
code

x

A-address

xxx

B-address d-modifier

xxx x

Any parts that are not used on a particular instruc­
tion are simply omitted. Some instructions, for
instance, consist of only an operation code and one
address or an operation code and a d-modifier. As
with data words, an instruction word is required
to have a word mark in its high-order position,
which is always the operation code.

To see how these parts fit together, let us con­
sider a typical instruction to move a word from
one part of storage to another: M 234 876. M,
the operation code, means Move Characters to A
or B Word Mark. The 234 is called the A -address
and 876 the B-address. (These addresses could in
general be any two addresses in storage.) The in­
struction means to move the word starting at the
A address to the word starting at the B address,
with the length of the word moved being defined
by the first word mark to appear in either place.

CODING FUNDAMENTALS 33

Actual
Addresses

000 to 999
1000 to 1099
1100 to 1199
1200 to 1299
1300 to 1399
1400 to 1499
1500 to 1599
1600 to 1699
1700 to 1799
1800 to 1899
1900 to 1999
2000 to 2099
2100 to 2199
2200 to 2299
2300 to 2399
2400 to 2499
2500 to 2599 .
2600 to 2699
2700 to 2799
2800 to 2899
2900 to 2999
3000 to 3099
3100 to 3199
3200 to 3299
3300 to 3399
3400 to 3499
3500 to 3599
3600 to 3699
3700 to 3799
3800 to 3899
3900 to 3999

No zone bits

A-bit,
using O-zone

B-bit,
using 11-zone

A-B-bit,
using 12-zone

* Letter 0 followed by Zero Zero

Three-Character
Addresses

000 to 999
~OO to ~99
/00 to /99
SOD to S99
TOO to T99
DOO to D99
VOO to V99

WOO to W99
XOO to X99
YOO to Y99
ZOO to Z99
too to !99

JOO to J99
KOO to K99
LOO to L99

MOO to M99
NOO to N99

* 000 to 099
POO to P99
QOO to Q99
ROO to R99

?OO to ?99
AOO to A99
BOO to B99
COO to e99
DOD to D99
EOO to E99
FOO to F99
GOO to G99
HOD to H99

IOO to 199

Figure 3.1. Core storage address codes.

Suppose for example that the following characters
are in storage:

A-field

36846582935
i

234

B-field

6549627957
i

876

In this example the instruction means to move the
word starting at 234 to the word starting at 876.
The length of the word moved will be established
by encountering a word mark in either field in
storage; the only word mark in this case is in
character position 871. The word moved will thus
be 582935. After the instruction has been executed,
the storage fields will be

34 IBM 1401 PROGRAMMING

A-field

36846582935
i

234

B-field

6549582935
i

876

There are several important things to remark
about this example. First, the storage positions
from which the word was moved were not affected.
To be technical about it, the word is not really
"moved" but "copied and moved." Second, the
previous contents of the storage positions to which
the word is moved are destroyed. As a completely
general principle, any time anything is placed in
storage locations the previous contents of the loca­
tions are erased. It is the programmer's respon­
sibility to be sure that the previous contents are
no longer needed. Third, the Move instruction
does not change word marks. In fact, word marks
are not affected by most instructions; when word
marks are to be set or cleared, special instructions
are used. Thus, when word marks are set to de­
fine fields (words) in storage, the definitions stay
in effect until deliberately altered.

For another example, suppose that the instruc­
tion and storage contents are as follows:

Move Characters to A or B Word Mark

FORMAT

Mnemonic

MCW

Op Code

M

Instruction

M 809 264

A-field

NETPAYTAX
i

B-field

6473852
i

264 809

Here the first word mark is encountered in the A field.
The result of this instruction is

A-field

NET PA Y

t
809

B-field

TAX NET PAY
i

264

The space between NET and PAY is no accident.
In showing the example this way, it is assumed
that a blank space between NET and PAY is de­
sired. In order to obtain it, a character position
must be set aside for the purpose. The character
"blank" is thus a character with the same status
as any other.

The essential information above the instruction
Move Characters to A or B Word Mark is sum­
marized in the box. In order to make this summary
box a source of all the reference information about
the instruction, it is necessary to list some things
that are not explained until later.

A-address B-address

xxx xxx

FUNCTION The word in the A-field is moved to the B-field. The data in the A-field is not changed; the
previous data in the B-field is lost.

WORD MARKS The first word mark encountered in either field stops the operation. If the first word
mark is in the A-field, the character at that position is moved; if the first word mark is in the B-field, that
position receives a character from the A-field. Word marks are not disturbed in either field. If the fields
are the same length, only one of them need have a word mark.

TIMING T = 0.0115 (LI + 1 + 2Lw)ms.

We see that to move words within storage (and
in fact to do almost any data manipulation) it is
necessary to have word marks set. This naturally
means that some way must be provided for setting
and clearing word marks within a program of in­
structions. This facility is provided by two in­
structions called Set Word Mark and Clear Word
Mark. These instructions may have one or two
addresses, allowing us to deal with one or two word

marks at a time. The operation code (,) is recog­
nized by the computer as meaning Set Word Mark,
so that the instruction

..L 200258

would mean to set the word mark bits of character
positions 200 and 258. ("Setting" the word mark
bit means making it a one, and clearing means
making it a zero. It is convenient to use phrases

Set Word Mark

FORMAT

Mnemonic

SW

orSW

Op Code

CODING FUNDAMENTALS 35

A-address B-address

xxx xxx

xxx

FUNCTION The word mark is set in both locations specified or in the one location if only one address is
written. The character(s) at the location(s) are unchanged.

TIMING T = 0.0115 (LI + 3)ms.

like "the first character with a word mark" in­
stead of the more precise "the first character in
which the word m'ark bit is a one.")

The operation code for the Clear Word Mark
instruction is D which is called a lozenge. Like
Set Word Mark, this instruction may have one or
two addresses. Its effect is to set to zero the word
mark bit in the character position or positions
addressed.

For an example of the use of these instructions,
suppose storage positions 600 to 608 contain the
following characters:

AH84K7L56

i
608

Executing the pair of instructions

o 608 604 ,602

would leave storage looking like

AH84K7L56

Notice that setting and clearing word marks has
no effect on the character stored in a position.

Clear Word Mark

FORMAT

Mnemonic

CW

orCW

Op Code

o
o

The reading of a card is called by executing the
Read a Card instruction, the operation code of
which is 1. This instruction, which need not have
any address, causes a card to be read and the in­
formation placed in storage in positions 1 to 80,
which is called the read area. The character in
column 1 is placed in position 1, the character in
column 2 is placed in position 2, etc., which makes
it quite easy to work with the card information
when it has been read into storage. There is no
way to read the card information into any other
positions than 1 to 80; as we shall see later, when
an address is used on a Read a Card instruction,
it does not refer to data. Reading a card destroys
any previous contents of positions 1 to 80, except
that word marks are not affected.

The punching of a card is called for by the
Punch a Card instruction, which has the operation
code 4. This instruction, which also need have no
address, causes whatever is in the punch area, posi­
tions 101 to 180, to be punched into a card. Punch­
ing a card does not affect the contents of the punch
storage area.

The printing of a line of information on the

A-address B-address

xxx xxx

xxx

FUNCTION The word mark is cleared in both locations specified or in the one location if only one address
is written. The character(s) at the location(s) are unchanged.

TIMING T = 0.0115 (LI + 3)ms.

36 IBM 1401 PROGRAMMING

printer is called for by the Write a Line instruc­
tion, which has the operation code 2. The line
printed consists of the 100 characters-in the print
area, positions 201 to 300.

The IBM 1403 Printer can be equipped option­
ally with 132 printing positions, in which case the
print area consists of positions 201 to 332.

It is often necessary·to clear an area of storage.
For instance, suppose that certain data and results
are to be moved into the print area and printed.
The words moved into the area will ordinarily not
occupy every position, and we naturally want to

Read a Card

FORMAT

Mnemonic

R

erase the contents of the unused positions before
printing to eliminate the unwanted characters. Fur­
thermore, it is often necessary to clear word marks
in an entire area of storage; once again the print
storage area is a good example. The Clear Storage
instruction makes it possible to clear as many as
100 positions with one instrliction, putting the char­
acter blank in all, and clearing all word marks.
The operation code is I, which is technically called
a virgule but is more commonly referred to as a
slash or slant.

Since one of the functions of this instruction is

Op Code

1
FUNCTION A card feeds and the 80 columns of information are read into storage locations 001 to 080.

WORD MARKS Not affected.

TIMING T = 0.0115 (LI + l)ms + I/O

Punch a Card

FORMAT

Mnemonic

P

Op Code

~

FUNCTION The data in storage locations 101 through 180 is punched into an IBM card.

WORD MARKS Not affected.

TIMING T = 0.0115 (LI + l)ms + I/O

Write a Line

FORMAT

Mnemonic

W

Op Code

~

FUNCTION The data in storage locations 201 to 300 (or 201 to 332) is transferred to the printer. The
printer takes one automatic space after printing a line.

WORD MARKS Not affected.

TIMING T = 0.0115 (LI + l)ms + I/O

to clear word marks, it obviously cannot depend
on the detection of a word mark to stop its action.
Instead, the computer is built to clear all positions
from the one addressed down to and including the
nearest hundreds position. If the instruction L 799

Clear Storage

FORMAT

CODING FUNDAMENTALS 37

is executed, positions 799, 798, 797, "', 701, 700
are set to blank and word marks cleared. If the
instruction / 801 is executed, positions 801 and 800
would be cleared. The instruction L 400 would
clear position 400 only.

Mnemonic

CS

Op Code

/
A-address

xxx

FUNCTION Clearing starts at the A-address and continues leftward through the nearest hundreds
position. The cleared area is set to blanks, and word marks are cleared.

WORD MARKS Word marks are not required to stop the operation.

TIMING T = 0.0115 (LI + 1 + Lx)ms.

To illustrate the use of the instructions described
so far, suppose that we are required to read a card
and print some of the information on it in a read­
able format. The card format for the sales card
of Section 1.3 was

Columns 1-4

5-8

9-11

12-13

Product number

Units sold

Salesman

District

Suppose that we are required to print this same
information in the following positions:

Printing positions 1-4

10-13

19-21

27-28

Product number

Units sold

Salesman

District

This spaces the numbers out so that they can more
easily be read.

As we start this operation, we do not know what
is in the read and print areas-and even if we did
know it probably would be unwanted information
and the word marks would likely be in the wrong
places. In the course of carrying out a complete
program, there are ordinarily several different types
of cards to be read and lines to be printed so that
word marks must be set properly for each type
before trying to use the information from cards
or trying to move information to the print area.

For these reasons we must begin the program

by clearing the read and print areas, which can be
done with three Clear Storage instructions (we
assume that the printer has the additional print
positions) :

/080

/299

/332

As soon as a card has been read, it will be neces­
sary to move the four words from the read area
to the print area, which will require word marks
to define the length of the fields. As far as we are
concerned in this particular example, it would not
matter whether the word marks were set before
or after reading the card. However, the normal
situation would be to read and print numerous
cards, all having the same format, in which case
we would repeat part of the program each time
a card is read and the line printed. When this is
done, it is pointless to set the word marks for every
card; reading a card does not erase them. There­
fore, it is desirable to set the word marks before
reading the card.

We recall that the Move Characters to A or B
Word Mark instruction is stopped by a word mark
in either the A- or the B-field so that it is not nec­
essary to set word marks in both the read and
print areas. In this example it really does not
matter much which area has them; we shall set
the word marks in the read area. Remembering
that the word mark of a data word must be in the

38 IBM 1401 PROGRAMMING

high-order position, we need to set word marks in
positions 1, 5, 9, and 12. This can be done with
the instructions

,001 005

,009 012

Now the card can be read, which requires only the
operation code 1. With the data from the card in
the read area, we can move the words to the print
area, which requires the following four instructions:

M 004 204

M 008 213

M 011 221

M 013 228

Recall that a Move instruction addresses the loW'­
order position (but largest address) and moves
characters until it encounters a word mark in the
high-order position of either field, in this case the
A-field.

The data in the print area can now be printed,
which requires only the operation code 2. The pro­
gram is shown in Figure 3.2.

REVIEW QUESTIONS

1. What does the operation code of an instruction do?
2. In the example on page 33 suppose there had been

a word mark in position 870. Would the word moved
have been the same or different?

IBJ.1140 1 PROGRAM CHART

Program:

Programmer:

0 Step Inst.
Instruction

0
No. Address P A/I B d

V 080

1/ 299

1/ 332

, 001 OOS

009 002

/

M 004 204

M 008 2/3

M 01/ 221

M 0/3 228

2

0
~ ~- -- - ~

3. Suppose there had been a word mark in position
234. What would have been moved?

4. Can word marks be set or cleared with a Move
instruction?

5. Suppose that storage contains the following charac­
ters:

A-field

258DP7FG5

i
604

B-field

HKLM8953V

i
709

What will the contents of the storage positions be if we
execute the three instructions

.!.. 709

M 604 709

o 709

Starting with the original contents again, what would
result from

M 602 704

6. Can you suggest why the computer was designed so
that the Clear Storage instruction clears to blanks rather
than zeros?

3.3 Storage of Instructions

We have so far spoken of instructions in terms
of what they cause the machine to do and have
not said anything about how the machine deals
with the instructions themselves.

FORM X 24-6437-0
PRINTED IN U.S.A.

Date:

Effective No.
Remarks of Characters

Inst. Data Totol

- ~ -- ,.....

Figure 3.2. Program segment to clear storage, set word marks, read a card, and print some of the information from the card.

The first and most important thing to realize is
that the program of instructions must be prepared
before the processing is done and that the program
must be in storage before it is executed. We write
the program, punch it on cards in a suitable format,
load the instructions into storage, and the instruc­
tions then control the machine without any further
action on our part.

This means, among other things, that when we
write the program we must anticipate everything
that the machine will have to do. We must know,
for instance, the maximum sizes of the fields that
the computer will process, but we cannot know the
actual numbers that will be dealt with. The in­
structions must be set up to handle any data of the
general type that it is designed to handle. If some­
thing comes up that we did not anticipate, the pro­
gram will still do what the instructions say to do,
even though the results may be meaningless. The
fundamental consideration is that by the time the
instructions are executed by the machine, we are
no longer in the picture.

Another consequence of the storage of instructions
is that they must be capable of being stored in the
same storage that is used for data and they must
be set up so that the machine can determine where
one ends and another begins. Since it is frequently
necessary to repeat the execution of groups of in­
structions or to skip around in the program, we
must have some way to identify an instruction by
its location in storage.

This brings us to a discussion of how instructions
are stored within the computer, which is one of
the most important topics in the entire study of
programming. The crucial concept is that in­
structions are brought to the control unit for execu­
tion from the internal storage of the computer,
where they are stored in the same way data is
stored. We may therefore talk about where in­
structions are stored in much the same way as we
talk about where data is stored.

In the IBM 1401 instructions are executed from
consecutively higher numbered storage locations,
unless special action is taken to break the consec­
utive sequence. The operation code of every in-

CODING FUNDAMENTALS 39

struction must have a word mark. Every character
of each instruction is stored in a character position;
an instruction is identified by the address of the
operation code. Note that the operation code is
the high-order character of the instruction so that
the addressing of instruction words is opposite that
of data words. Furthermore, instruction words are
picked up from storage from left to right, whereas
data words are picked up from right to left.

For an application of these ideas, consider the
program that was developed in the preceding sec­
tion. This could be stored in any location that does
not conflict with the storage of data; it should be
obvious that since the program is stored just as
data is, the program storage must not overlap the
data storage. A storage location can store either
one character of an instruction or one character
of data, but not both at the same time, obviously.
In this example the only locations used for data
are the read and print areas; the program could in
theory be placed anywhere else. We avoid the
punch area, however, on general principles: in most
cases it will be needed for storing information to
be punched on cards, and we prefer not to get in
the habit of putting instructions where they could
get in the way in some problems.

Let us make the arbitrary choice of storage lo­
cation 700 for the first character of the first in­
struction of this illustrative program. The com­
plete program in storage is viewed the same way we
view data. The underscoring represents word marks,
as with data. The characters with word marks are,
of course, the operation codes. Simply by counting
character positions from the first location of the
program, we can determine the address of each
character of the program. The most important
location for each instruction is the one that con­
tains the operation code, since it is by the address
of the operation code that we refer to an instruction.

It would obviously be inconvenient to show in­
structions strung. out along a line this way, which
was done to emphasize the similarity of storage
of data and instructions. The normal way to write
instructions is on a 1401 Program Chart, as shown
in Figure 3.2. On this form the step number is

L080L299L332~001005~009012l11004204110082131101122111013228~

" " "" i /" iii i 700 704 708 712 719 726 727 734 741 748 755

The characters of instructions in the program shown in Figure 3.2, as they would appear in storage.

40 IBM 1401 PROGRAMMING

I-register

I I I

OP-register

D

A-register

D

A-address
register

I I I

B-register

D

B-address
register

I I I
Figure 3.3. 1401 Processing Unit registers.

used at the discretion of the programmer for his
convenience. It may be used to identify the in­
struction when it is punched on a card; it does
not enter the computer or have anything to do with
the computer's operation. The instruction address
is the address of the storage location in which the
operation code is stored. OP stands for the opera­
tion code. A/I is the address of the A data field,
or, as we shall see a little later, the address of the
next instruction. B is the address of the B data
field-if there is one, of course; d is the d-modifier,
which we shall also consider later. The Remarks
space may be used to explain what the instruction
does for ease of understanding by other program­
mers or as a reminder to the original programmer.
(It is surprising how unfamiliar one's own work
can seem after six months.) The "effective num­
ber of characters" column is used to determine how
much computer time will be used by the instruc­
tion; we shall not be greatly concerned with this
problem.

It is important to be clear on how much of this
gets into the computer: only the instruction itself.
The instruction address is not part of the instruc­
tion; it merely tells us where the instruction is
located in storage (or, rather, will be located after
the program is put into storage) . The other parts­
the step number, the remarks, and the effective
number of characters-are strictly for the conven­
ience of the programmer.

As we have seen, an instruction for the 1401 can
vary in length, whereas in most computers the
length is fixed. It is necessary to fill in only as
many boxes on the form as are used on each in­
struction.

REVIEW QUESTIONS

1. Does the fact that instructions are stored in a man­
ner very similar to the way data is stored suggest that
it might be possible to do arithmetic on instructions?

2. For both data and instructions, the word mark is
placed in the high-order character. Are data and instruc­
tions both addressed in the same way also?

3. Can you tell, without knowing anything about the
program organization, whether a given character belongs
with data or instructions?

4. What is the use of the instruction address column
on the coding sheet?

3.4 Arithmetic and Control Registers

The computer carries out its work of interpreting
instructions and processing data by use of several
registers, a register being an electronic device that
can hold one or more characters. Some registers
are involved in the transmission of information
between internal storage and other parts of the
machine. Some are used to hold the parts of an
instruction while it is being executed. Others are
used to hold the data or results of arithmetic opera­
tions.

There are six registers in the P8J't of the 1401
that interprets instructions and operates on infor­
mation in the internal storage of the machine, as
shown in Figure 3.3. (A number of other registers
are involved in transferring information between
internal storage and input or output devices, but
we shall not be concerned with them.)

The most heavily used register is the B-register,
which holds one character. Every character leaving
core storage enters the B-register and is then di­
rected elsewhere, depending on what is being done
at the moment. If the character is the first in an
instruction, which is the operation code, it is sent
to the OP-register, where the machine inspects the
character and determines what is to be done by
this instruction.

If the character from storage is part of the A/I­
address, it is sent to the proper position of the
A-address register, which is a three-character regis­
ter that will later determine (in most cases) the
address of the next data character to be obtained
from storage. If the character entering the B­
register is a part of the B-address, it is sent to the
proper position of the B-address register, also three
characters, where it will later determine (in most
cases) the next location to which to send a character
in storage.

The A-address and B-address registers are ac­
tually three-character registers, corresponding to
the three characters in a 1401 storage address, but
for convenience they are displayed on the console

of the machine in four-character form. For this
reason they are shown as four characters in the
diagram of Figure 3.3.

The d-modifier is not stored in a separate register.
We see that the A- and B-address registers are

used primarily to keep track of the addresses of
data characters. The I -address register performs
the same function for instructions. This clearly is
necessary; since instructions are stored as data is,
the 'machine must have some way of keeping track
of where the next instruction character is to come
from.

The operation of the registers may be explained
more fully in terms of an example. Suppose that
the instruction to be executed is

M 410789

i
350

In order to execute the instruction, the I-address
register must contain 350. The 350 would normally
be there as the result of the execution of the pre­
ceding instruction; that is, the last character of the
preceding instruction was located in position 349,
and we said that the register always contains the
address of the next instruction character to be ob­
tained from storage.

The machine operates in two phases: an instruc­
tion phase and an execute phase, or I-phase and
E-phase. The I-phase is used to obtain and inter­
pret the instruction, and the E-phase is used to
carry out the instruction. When the I-phase be­
gins, the machine uses the contents of the I-register
to determine where in storage to obtain the first
character of the instruction, which is always the
operation code. When this character is obtained
from core storage, it moves through the B-register
and into the OP-register. The machine "looks at"
the operation code in the OP-register, with suitable
electronic circuitry, and determines what the func­
tion of this instruction will be. This also tells the
machine something about the function of the re­
maining characters of the instruction as they are
obtained.

As soon as the first character of the instruction
has been obtained, the contents of the I-register
are increased by one, giving the address of the next
character of the instruction. This is then obtained;
it goes through the B-register to the A-address
register. The I-register is again increased by one,
the next character is obtained, placed in the A­
address register, and so on. In our example of a

CODING FUNDAMENTALS 41

Move instruction with two addresses, this process
would continue until both addresses had been ob­
tained and placed in the A- and B-address registers.
At this point the I-register would contain 357, the
address of the next instruction character from stor­
age. This character would also be obtained from
storage and placed in the B-register, but the ma­
chine would detect a word mark, since this char­
acter would be the operation code of the next in­
struction, whatever it is. The word mark would
signal the machine that this instruction is complete
and would thus end the I-phase.

No data has been moved yeti This much simply
gets the instruction from storage and prepares for
the execution of the instruction, which may now
begin. The starting addresses of the two fields are
in place in the A-address register and the B-address
register, and circuits in the control section of the
machine have been set up to carry out the Move
function as a result of interpreting the M in the
OP:..register as meaning "move."

The first step of the E-phase obtains the first
character of the A-field, the address of which is
given by the contents of the A-address register.
This character is brought from storage, placed in
the B-register,. checked to see whether it has a word
mark, moved to the A-register, and placed back in
storage at the location specified by the contents of
the B-address register. As the character is stored,
the machine is able to determine whether the posi­
tion at which it is being stored has a word mark.
This completes the movement of one character.
The contents of the A-address register and the B­
address register are both decreased by one, to pre­
pare for dealing with the next character. If a word
mark was detected in either storage position, the
instruction execution is completed and we go back
into the I-cycle to obtain and interpret the next
instruction; if not, the next character is moved.
This process of getting one character, moving it to
another location, and checking both places for word
marks to determine when the movement is finished
is repeated until a word mark is finally detected.

For the purposes of things we sometimes want
to do next, it is important to realize the status of
the three address registers when the instruction is
finished. The I-address register contains the ad­
dress of the first character (the operation code) of
the next instruction in storage. We have seen
that this character must have a word mark so that
the control circuits may recognize the end of the
current instruction. In most cases the next in-

42 IBM 1401 PROGRAMMING

struction will be the next one in sequence in stor­
age, but we shall see several important exceptions.
The A-address register contains the address of the
next character after the last one transferred. Since
the data characters are picked up from storage from
right to left, this address will be one less than the
address of the last character obtained. Stated an­
other way, it is the address of the next higher order
character after the last one moved. This will often
be the low-order character of another data word-a
fact that can sometimes be useful. The B-address
register, similarly, contains the address of the next
character position after the last one into which a
character was moved. This will also often be the
low-order character of another word.

It is frequently possible to take advantage of
the contents of the registers after the completion
of an instruction, using a technique called chaining.
Whenever the B-address register already contains
the desired address, it is permissible to omit the
B address of the next instruction; if both address
registers already contain the desired addresses,
both addresses may be om~tted. This saves storage
space, obviously, and also saves the time that would
have been spent in obtaining the longer instruction
from storage. This is a unique feature of the IBM

1401 system.
For an example of how chaining can be used, sup­

pose storage contains the following:

~345
j

880

~8765
j

619

ABCDEFGHIJK
j j

739 743

Suppose that it is desired to move the field in 877-
880 to 740-743 and to move the field in 615-619 to
735-739. Note that the two fields are to be placed
in consecutive locations. If we first execute the
instruction

M 880 743

we will move one field as specified, leaving in storage

~345
j

880

~8765
j

619

ABCDEFG 2345
j j

739 743

Now what are the contents of the A- and B-ad­
dress registers? The A-address register contains
876, the address of the character to the left of the
last one picked up from storage. This fact is of
no value to us, since that' is not where the next
field is to come from. The contents of the B-ad-

dress register are useful, however: 739 is just the
address we would have to write on the next Move
instruction. We may therefore omit it and write

M 619

The control section will recognize the word mark
on the next instruction (whatever it is) as terminat­
ing this instruction without having picked up a
new B-address. Therefore, the contents of the B­
address register will not be disturbed and the pre­
ceding contents will be used. The effect is the
same as if the instruction had been

M 619 739

Either way, the storage contents will now be

~345
j

880

~8765
j

619

AB987652345
j j

739 743

The technique used here, in which an A-address
is written but no B-address, is called partial chain­
ing. It applies only to the Move and Load instruc­
tions, since other instructions are handled differ­
ently in the internal registers of the machine.

For another example, suppose that storage con­
tents were:

LMNOPQRSTUVWXYZ
- j- j

395 400

112233445566778
j j

495 500

The problem is to move 390-395 to 490-495, and
396-400 to 496-500. Since the fields are consecu­
tive in both places, we should be willing to do it
all in one instruction-but this cannot be done
because the first word mark will stop the move­
ment. However, if we make the first instruction

M 400 500

then the A-and B-address registers will be properly
set up to move the second field, since they will con­
tain 395 and 495, respectively. The second instruc­
tion can consist of just the operation code M.

Chaining thus saves six instruction characters
and a certain amount of computer time. Properly
used, it can be quite valuable. (But never try to
do things with chaining that cannot be done! It
is not possible to use chaining unless the following

field is immediately to the left of the preceding one.
Furthermore, it is not possible to omit the A-address
and write a B-address; the machine will always put
the first address it finds into the A-address register
and has no way of "knowing" that you meant it to
go into the B-address register. Therefore, if the
A-address register is properly set up but the B-ad­
dress register is not, chaining is not applicable.)

REVIEW QUESTIONS

1. What is a register?
2. Which of the registers is involved in every transfer

of information out of storage?
3. What is the difference between an I-phase and an

E-phase?
4. What are the contents of the A-address register and

the B-address register after any movement of data?
5. How does the control section "know" that it has

reached the end of an instruction, bearing in mind that
an instruction can be one to eight characters in length?

6. What is chaining?

3.5 Addition and Subtraction

The basic idea of addition is that the number
in the A-field is added to the number in the B-field
and the sum replaces the B-field. The B-field must

Add

FORMAT

Mnemonic

A

Op Code

A

CODING FUNDAMENTALS 43

have a word mark because it is this word mark
that stops the instruction execution. The A-field
is required to have a word mark only if it is shorter
than the B-field; in this case the A-field is added
only until its word mark is reached but all carries
in the B-field are completed. VVe may illustrate
the addition operation with the following storage
contents:

2847;f25
i

608

57;f9949
i

473
The instruction

A 608 473

would give the resulting B-field:

5710274

The word mark in 606 signals the end of the A-field
but all carries in the B-field are completed.

If the instruction had been

A 608 470

with the original storage contents, the result would
have been

5764949

The word mark in 469 stops the operation, without
a word mark having been detected in the A-field.

A-address B-address

xxx xxx

FUNCTION The data in the A-field is added algebraically to the data in the B-field. The result is stored
in the B-field.

WORD MARKS The B-field must have a defining word mark because it is this word mark that stops
the operation.

The A-field must have a word mark only if it is shorter than the B-field. In this case the transmission
of data from A to B stops when the A-field word mark is sensed. Carries within the B-field are completed.

If the A-field is longer than the B-field, the high-order positions of the A-field that exceed the limits
imposed by the B-field word mark are not processed.

If the A- and the B-fields have like signs, the result has the sign of the B-field. If the signs are different,
the result has the sign of the larger. '.

If the fields to be added contain zone bits in other than the high-order position of the B-field -and the sign
positions of both fields, only the digits are used in a true-add operation. B-field zone bits are removed
except for the units and high-order positions in a true-add operation. If the A- and B-fields have unlike
signs, a complement add takes place, and zone bits are removed from all but the units position of the B-field.

If an overflow occurs during a true-add operation, a special overflow indicator is set, and the overflow
indications are stored over the high-order digit of the B-field:

44 IBM 1401 PROGRAMMING

Condition

First overflow
Second overflow
Third overflow
Fourth overflow

For subsequent overflows repeat conditions 1 to 4.

Result

A-bit
B-bit
A- and B-bits
No A- or B-bits

The Branch If Indicator On (B xxx Z) instruction tests and turns off the overflow indicator and branches
to a special instruction or group of instructions if this condition occurs. There is only one overflow indi­
cator in the system. It is turned off by a Branch If Indicator On instruction.

TIMING 1. If the operation does not require a recomplement cycle,

T = 0.0115 (Lr + 3 + LA + LB)ms.

2. If a recomplement cycle is taken,

T = 0.0115 (Lr + 3 + LA + 4LB)ms.

Subtraction, as might be expected, is very similar
to addition. The A-word is subtracted from the
B-word; the difference replaces the B-word in
storage. The word-mark requirements are the same
as in addition: if the fields are the same length,
the A may have a word mark but need not; if the
A field is shorter, both must have word marks. (In

any case the A-field cannot be longer because the
B-field word mark stops the operation.)

Subtract

FORMAT

Mnemonic

S

Op Code

S

Subtraction is algebraic, as is addition. The sign
of the result depends on the signs of the two fields
and on which of them is larger, as shown in the
summary box.

A-address B-address

xxx xxx

FUNCTION A-field is subtracted algebraically from the B-field. The result is stored in the B-field.

A-field sign

B-field sign

Sign of result

+
+

+ if B-field value greater
- if A-field value greater

+

+
+ + if A-field value greater

- if B-field value greater

WORD MARKS A word mark is required to define the B-field. An A-field requires a word mark only
if it is shorter than the B-field. In this case the A-field word mark stops transmission of data from A to B.

TIMING 1. Subtract-no recomplement:

T = 0.0115 eLr + 3 + LA + LB)ms.

2. Subtract-recomplement cycle necessary:

T = 0.0115 (Lr + 3 + LA + 4LB)ms.

REVIEW QUESTIONS

1. On addition and subtraction, when must the A-field
have a word mark?

2. If the A-field is shorter than the B-field, why can­
not the execution of an Add instruction stop when the
end of the A-field is reached?

3. What is the sign of the result when a large negative
number is subtracted from a small negative number?

EXERCISES

*1. Given the following storage contents,

1234567
- i

9876543
- i

800

show the result of executing:

M 799 200

M 796 196

200

2. Given the following storage contents,

64378
i

339

12645
- i

881

show the result of executing A 339 881.
3. Given the storage contents,

64378 12645

f - i
339 881

show the result of executing A 339 881.
*4. Given the storage contents,

5028 62348
- i i

497 508

show the result of executing §. 497 508.

CODING FUNDAMENTALS 4S

S. Given the storage contents,

621896 628324

i
500

i
600

show the result of executing S 500 600.
*6. Write a program segment to read a card and then

punch another card with the same information.
7. Write a program segment to read a card and print

part of the information in it as follows:

Card
Columns

2-7
8-11

43
44-70

Print in
Print

Positions

2-7
15-18
22
30-56

*8. Write a program segment to read a card and print
a line as follows:

Print
Positions

1-8
20-22
30-35

Print

Contents of card columns 1-8
Contents of card columns 10-12
Sum 'of contents of card columns

15-18, 19-22, and 23-26

9. A report form and a card form are shown on the
next page. Write a program segment to read the card
and print the required information as shown on the report.

Note that leading zeros have been deleted in printing:
where the card might have 09285, the report shows 9285.
This zero suppression is obtained by using the Move
Characters and Suppress Zeros instruction, which has the
operation code~. The A-field must have a word mark;
word marks in the B-field have no effect and in fact are
erased.

46 IBM 1401 PROGRAMMING

ACCOUNTS RECEIVABLE REGISTER HADUN MFG. CO.

CUSTOMER
CUSTOMER NAME

LOCATION INVOICE INVOICE INVOICE
NUMBER

STATE CITY
NUMBER NUMBER AMOUNT

9285 COVENTRY OIL 16 67 11509 11 8 59295
9285 COVENTRY OIL 16 67 12292 12 23 95097

21217 CRESCENT BELT CO 36 471 11511 11 8 33563
21217 CRESCENT BELT CO 36 471 12263 12 17 12175
29031 DENNIS MFG CO 6 63 11615 11 14 44012
29131 DENNIS MFG CO 6 63 11676 11 23 72222
29134 DEPOSIT DIST CO 25 39 9689 9 11 64540
29134 DEPOSIT DIST CO 25 39 11605 11 11 27169
29134 DEPOSIT DIST CO 25 39 12234 12 14 55933

Print Positions 7-11 16-37 44-45 49-51 56-60 64-6568-69 74-80

I I T I I
CuslornerNo. Invoice I Entrr Dell I Invoice Amount ACCOUNTS RECEIVABLE

Customer Nome rnt'~

/ ENTRY >- NVOIC INVOICE CUSTOMER LOCATION
TRADE GALES DATE j DISCOUNT AMOUNT INVOICE

DATE CUSTOMER NAME DATE NUMBER NUMBER CLAS Z MAN PAID ~ ALLOWED PAID AMOUNT
--,- g -- --,~ ~ NO. :;OMv'~ MO DA >- MO DA S1. CITY :
0000 000 0000000000000000000000 0000 00000 00000 00000 000 00000 00000 ~~~~I~~ 000000 ~~~~~I~~ 1234 511 1'~111213U~"nlln~Vnn~~Hnn~ 30313233 l4353li3738 3940414243 4445464748 495051 5253545556 5758596061

7;';°1;1'1';'
11111 11 1111111111111111111111 1111 11111 11111 11111 111 11111 11111 1111111 11111111

I
22222:22 2222 222 2222222222222222222222 2222 22222 22222 22222 222 22222 22222 2222122 222?2

3333 333 3333333333333333333333 3333 33333 33333 33333 333 33333 33333 3333133 3333
1
33 33333133

4444 444 44 4 44 444 4 444 4 44 44 4 4 44 4 4444 44 4 4 4 44444 44444 444 44444 44444 4 4 4 414 4 4444144 44444144

5555 555 5555555555555555555555 5555 55555 55555 55555 555 55555 55555 5555:55 5555155 55555:55

6666 666 6666666666666666666666 6666 66666 66666 66666 666 66666 66666 6666166 6666166 66666166

7777777177777777771771717777777777777717171177711771 7 7 1 7 7 7 7 1 7 7 7 7 717 7 1 7 7 717 7 7 7 7 7 7:7 7

888 8 8 8 8 8 8 8 8 8 8 8 818 8 8 8 8 8
1
8 8 8 8 8 8 818 8

I I 1

~~~~~~~:~:~=~~::~:::~::::!:!!:~~:!:!:!!!!!!~::!!!!~~~~!!~!!!~!:!:~::::!~!!!:!~!! 

I I I I 



4. SYMBOLIC PROGRAMMING 

The simple examples of computer instruc­
tions that we have seen so far have used 
actual machine addresses, which is the way 
the machine must have them. However, 
very few programs are actually written this 
way. Writing programs with actual (also' 
called absolute) addresses leads to problems 
in assigning data to storage locations, makes 
it difficult to write cross references within a 
program, leads to difficulties when several 
people must work on the same job, and pro­
duces programs that are very difficult to 
correct and to modify. 

For these reasons almost all programming 
is done with a symbolic programming sys­
tem. For the 1401 system there are three 
rather similar symbolic programming sys­
tems available, called SPS-1, SPS-2, and 
Autocoder. In this section we discuss the 
features of the use of SPS-1; all of this ma­
terial is also applicable to SPS-2 and to 
Autocoder, since these systems are extensions 
of SPS-l. 

After establishing the fundamental ideas 
of symbolic programming in this section, 
almost all later examples are written in the 
SPS language. This allows the reader ample 
time to become thoroughly familiar with 
symbolic programming, bearing in mind that 
almost no absolute programming is done in 
applications. 

4.1 Fundamentals of Symbolic 
Programming 

The basic idea of symbolic programming 
is that symbols are written in place of actual 

machine addresses. After the entire program 
has been written in the symbolic language, 
the symbols are translated into absolute ad­
dresses by a processor. The processor is it­
self a large p~ogram, which can be run on 
the same machine as the eventual absolute 
language program. The program, as initially 
written in symbolic language, is called a 
source program; the processor program 
translates the source program into an object 
program. The object program may then 
be run to produce problem results. 

It is worth emphasizing before proceeding 
further that (1) the processor is itself a pro­
gram, not a machine, and (2) the processor 
only translates the source program into an 
object program--it does not cause the ob­
j ect program to be executed. 

We may begin to get a clearer idea of how 
symbolic programming is used by considering 
an example. Figure 4.1 is a program written 
on a Symbolic Programming System coding 
sheet. The purpose of this very simple illus­
trative program is to read four cards, each 
of which contains an amount in dollars and 
cents in columns 1 to 10. The program is to 
form the sum of these four amounts, round 
the sum to the nearest dollar, and print the 
total in dollars on the printer in print posi­
tions 1 to 9. This, of course, is vastly simpler 
than anything we would normally do with 
a computer, but it will serve to illustrate the 
symbolic programming principles that are 
our concern at the moment. 

A glance at Figure 4.1 shows that all ad­
dresses are written as symbols, with the 
exception of a few at the beginning. The 
symbols used in the program happen to have 

47 



48 IBM 1401 PROGRAMMING 

either five or six characters. In general, a symbol 
may have one to six letters and digits; the first char­
acter must be a letter. The invention of symbols is 
completely under the control of the programmer. It 
is often convenient to choose symbols that are de­
scriptive of the information referenced by them, 
such as TOTAL to stand for the address of the field 
in storage where a total is stored. On the other 
hand, symbols are not required to have any mean­
ing, and none is attached to them by the processor. 

We see that it is possible to use ·absolute addresses 
where convenient. The processor is easily able to 
distinguish between symbolic and absolute ad­
dresses by the fact tha~ the first character of a 
symbol is always a letter, whereas the first char­
acter of an absolute address' is always a digit. We 
note that absolute addresses are written in four­
digit form. This is also true of addresses over 999. 
With SPS we are not required to figure out the 
three character form of addresses. If we want to 
write the address 1234, we write it just that way 

0 0 

rather than as S34. The processor will convert the 
four-digit addresses to the three-character form 
required inside the machine. (If an address like 
S34 were used it would be misinterpreted as a sym­
bol.) 

In looking at the program in Figure 4.1, it will 
be noted that the operation codes are written in 
a new way. These are mnemonic operation codes. 
"Mnemonic" means "aiding the memory"; these 
substitute operation codes are used because they 
are easier to remember than the actual machine 
operation codes. "CS" is the mnemonic operation 
code for Clear Storage, which is indeed easier to 
remember than / and SW is easier to remember 
than a comma. The mnemonic operation codes for 
the instructions that have been discussed so far 
are shown in Figure 4.2. 

It is still permissible to use the actual operation 
codes. If this is done, the code should be written 
in column 16, whereas mnemonic operation codes 
are always started in column 14. 

0 
IBM 1401 Symbolic Programming System 

Coding Sheet 
Page No.~of _I __ Program 

I 2 

Programmed by Date Identification I I I I I I 
76 80 

(A) OPERAND (B) OPERAND 

LINE COUNT LABEL OPERATION ,~, CHAR. ~ ,~, CHAR. ~ d COMMENTS 
ADDRESS ADDRESS 

3 5 6 7 8 13 14 16 17 
ADJ. 

27 28 
ADJ. 

38 39 40 55 

0 I 0 STA RT CS' 0080 
, I CL EAR READ I I 

0 2 0 CS' 0299 
, I 

AND PRJ NT. I I 

0 3 0 CS! 0332 I I ST,¢,RAGE. ARE.AS I I 

0 4 0 SW' 0001 
, I SET. W,M I I 

0 5 0 RE.PEAT R 
, , : REA D I 

0 6 0 MC'W REA D / I T, ¢, T. A L 
, 

CARDS I I 

o 7 0 R 
, I I AND I I 

o 8 0 A 
, 

REA D / 
, 

T ¢, T.A L I F,¢,RM. I , 
o .9 0 R 

, 
I , 

T,~,T.AL I , 
I o 0 A : REA D / I T¢,T.A L I 

I I 

I I 0 R 
, I I 

I I 

I 2 0 A 
, 

RE A D / I T/.P T. A L : I 1 

--'-~ 0 A 
, 

R¢,U ND I T,t;, T. A L I Rr;,uND T,¢ ,1/, I I I I 

I 4 0 MC'W T¢, TA L :-,002 PRINT./ ' I M¢YE ,!II, ·tlNL y, I 

~' ,_5.L0 W 
, 

REPEAT' 
, I PRI NT tf REPEAT I I 

r-!-~.L9- tZ.,.~ R,¢,U,N D DC'W¥ :50 I 
I 

j~ TIc T:A L OC'W¥ I I 
._' ... J ... L~ , , 
~_8, 0 R.E.AD/ OS' 0010 I I , I 

Q~ ... i!.l~.l.L.F T I OC:W 0209 
, I 

f--'-'-..?l...<?.... I I 

2 o 0 EN'D S TA RT I I 
I I 

I I 
, 

1--1-...' -- ....I... ---"--'.J.---L..-l--. I I I I I I I 

...... --- -
Figure 4.1. Example af a Sy'mbalic Programming System (SPS) program. Four cards are read, after which the rounded sum of one field 

from each card is printed. 



We may now investigate the program shown in 
Figure 4.1 in detail. \Ve see that the first instruc­
tion has a label of START. This label becomes 
the symbolic address of the instruction; that is to 
say, when this source program is translated by the 
processor, the symbol START will always be asso­
ciated with the location in storage to which the 
processor assigns the operation code of the Clear 
Storage instruction. Any instructions elsewhere 
in the program that must refer to this instruction 
may be written with the symbolic address START 
instead of an absolute address. 

The addresses of the three Clear Storage instruc­
tions are absolute. This is done because these ad­
dresses could never change; no program modifica­
tion or correction could ever involve changing the 
read and print storage areas. The address of the 
Set Word Mark Instruction is also absolute, on the 
theory that the field to be read from the card will 
always start in column 1. We shall discuss later 
the consequences of this assumption. 

The Read a Card instruction presents no new 
concepts. The Move Characters to A Word Mark 
moves the data field from its position in the read 
storage area to the locations in which the total will 
be accumulated. The following six instructions 
read the other three cards and add their data fields 
to the locations in which the total is accumulated. 
The next instruction adds a 50 to the total. Re­
membering that the data fields were assumed to 
represent dollars-and-cents amounts, 50 added to 
the least significant part of the total is, in effect, 
$0.50. This means that if the cents amount is 49 
or less, adding 50 will not change the dollar amount. 
However, if the cents amount is 50 or over, adding 
50 to it will increase the dollar amount by 1. This 
is exactly what we want in order to round the total 
to the nearest dollar. 

The next instruction moves the dollars portion of 
the total to a section of the print storage area. 
Character adjw;tment is used on this instruction. 
When it is processed, 2 will be subtracted from the 
address which is established as the equivalent of 
the symbol TOTAL. This approach is necessary 
because we do not know what the equivalent ad­
dress will be-since the processor has not yet de­
fined it. If we did know the actual address corre­
sponding to TOTAL, we could write an address 2 
less than that to get only the dollars portion. The 
effect of the character adjustment is just what we 
need: the eventual address will be 2 less than 

SYMBOLIC PROGRAMMING 49 

Instruction Actual Mnemonic 

Move Characters to A 
or B Word Mark M MCW 

Set Word Mark SW 
Clear Word Mark 0 CW 
Read a Card 1 R 
Punch a Card 4 P 
Write a Line 2 W 
Clear Storage / CS 
Add A A 
Subtract S S 

Figure 4.2. Mnemonic operation codes. 

whatever address becomes the equivalent of 
TOTAL. 

The last instruction writes the contents· of the 
print storage area on the printer. \Ve see here a 
variation of the \Vrite a Line instruction: an ad­
dress is given in the A-operand field. vVe recall 
that the Write instruction always refers to the 
print area so that no address is required for the 
data. This is our first example of an instruction 
address that refers to another instruction, this 
being the Write and Branch instruction. When the 
line has been 'written, the control section of the 
machine will automatically take the next instruc­
tion from the location specified by the address in 
this Write instruction. This is the reason the first 
address of an instruction is referred to as the AjI­
address: it can refer either to a data address or to 
an instruction address. The idea here is that after 
the first group of four cards has been read and 
totaled we would like to return to the beginning 
of the program to read another group. This process 
would be repeated indefinitely as long as cards re­
mained in the hopper. (We shall consider in the 
next section how a test might be set up to detect 
the last card of the deck.) 

The next four instructions are used to define 
symbols in the program and in one case to define 
a constant that is referenced by a symbol. They 
are not instructions to the computer but to the 
processor; they will not result in the creation of 
any instructions to be executed in the object pro­
gram. 

DCW stands for Define Constant with a Word 
Mark. Taking the first of these, we have an in­
struction to the processor to set up a constant two 
characters long, as specified by the number in the 
count field, columns 6 and 7. The constant is 



50 IBM 1401 PROGRAMMING 

shown, starting in column 24, to be 50. The asterisk 
in column 17 tells the processor that the constant 
may be assigned to any convenient locations in 
storage. As we shall see later, the constant in fact 
would be assigned to the two locations immediately 
following the last instruction of the program. The 
symbol ROUND is associated with the low-order 
character position of this two-character field. The 
DeW instruction that defines the symbol TOTAL 
is slightly different. It is specified as eleven char­
acters, which is the number needed to hold the 
sum of four 10-digit numbers. However, nothing 
is written starting in column 24. This, in effect, 
defines the constant as consisting of 11 blanks. 
The situation here is that we need to specify the 
length of this field and to have the symbol TOTAL 
established as being equivalent to the low-order 
character of the field, but we do not actually need 
to enter a constant. Here we are only setting up 
a storage area with a word mark and defining the 
meaning of the symbol associated with it. 

The next instruction is a DS, for Define Symbol. 
It establishes 0010 as the absolute equivalent of the 
symbol READ1 but without causing anything to 
be loaded into storage with the object program. 
This is necessary here because we are dealing with 
the read area, which is used during object program 
loading; it is not permissible to use a DeW to set 
a word mark in this area. The DS, combined with 
the Set Word Mark instruction in the object pro­
gram, accomplishes the same result but does not 
set the word mark until after the object program 
is loaded. The DeW defining the symbol PRINT1 

PG LIN CT LABEL OP A OPERAND B OPERAND 

I Ole 4 START CS 0080 
1 020 Il CS 0299 
1 030 4 CS 0332 
1 040 4 SW 0001 
1 050 1 REPEAT R 
1 060 7 MCW READ1 TOTAL 
1 070 1 R 
1 080 7 A READl TOTAL 
1 090 1 R 
1 100 7 A READl TOTAL 
1 110 1 R 
1 120 7 A READl TOTAL 
1 130 7 A ROUND TOTAL 
1 140 7 MCW TOTAL -002 PRINT1 
1 150 4 W REP£:AT 
1 160 2 ROUND DCH * 
1 170 11 TOT AL OCW .. 
1 180 READl OS 0010 
1 190 9 PRINT1 DCW 0209 
1 200 END START 

is acceptable, since the print area is not used during 
loading. 

The last "instruction" is again strictly an instruc­
tion only to the processor. The END specifies that 
the end of the program has been reached and that 
the processor may complete the production of the 
object program. We write in the A-operand ad­
dress portion of the END instruction the address 
of the first instruction that should be executed 
when the object program is later executed. 

The way this program has been written, the 
processor would put the first character of the pro­
gram in storage location 333. All succeeding char­
acters would be stored in sequential locations in 
this example. 

The translation of the source program into an 
object program, which is also called assembly, may 
be outlined as follows. The source program cards 
are punched from the coding· exactly as shown in 
Figure 4.1, with one card per line. The processor 
program must be in storage and will have complete 
control of the computer during the assembly; the 
source program is not executed during assembly. 
The processor reads the source program cards and 
translates the program into absolute form. The 
procedure varies somewhat, depending on whether 
the machine on which the assembly is done has 
tapes. On a card machine there is an additional 
card-handling step during the assembly. In either 
case the result of the assembly by the processor 
is a deck of cards containing the obj"ect program. 
It is also possible to get a post listing or assembly 
listing, which shows both the original source pro-

D LOC INSTRUCTION COMMENTS 

0333 I 080 CLEAR READ 
0337 I '299 AND PRINT 
0341 I 332 STORAGE AREAS 
0345 , 001 S[ T wr~ 

0349 1 READ 
0350 M 010 411 CARDS 
0357 1 AND 
0358 A 010 411 FORM 
0365 1 TOTAL 
0366 A 010 411 
0373 1 
0374 A 010 411 
0381 A 400 411 ROUND TO $ 
0388 M 409 209 MOVE $ ONLY 
0395 2 349 PRINT & RlPEAT 

50 0400 
0411 
0010 
0209 

I 333 080 

Figure 4.3. Assembly listing of the program of Figure 4.1. 



gram and the final absolute object program pro­
duced from it. 

The assembly listing for the program in Figure 
4.1 is shown in Figure 4.3. Note that the listing 
gives the instructions and data as originally written 
in the source program and also the assembled ob­
ject program input. The count field is seen to 
contain a value for all lines, including instructions; 
the instructions are provided by the processor for 
the programmer's convenience. Notice that the 
addresses shown for the assembled input are correct 
for both instructions and constants: high-order for 
instructions and low-order for constants. 

The program has not been executed yet! All 
that has been accomplished so far is the translation 
of the symbolic source program into an absolute 
object program and the production of a deck of 
cards containing the object program. Now the 
obj ect program may be loaded into the machine 
and run. It is only at this point that the cards 
containing problem data are placed in the hopper 
and read. In short, it is only now that the program 
that we have written is in control of the computer 
system. 

Let us now consider what would be required to 
make a change in this program. Suppose that after 
the program has been written and assembled, the 
problem specifications change so that it is necessary 
to form the sum of the dollars-and-cents amounts 
on five cards and that the fields are in columns 14 
to 23 instead of 1 to 10. 

To incorporate these changes in the program 
requires adding a Read a Card and an Add in­
struction and changing all of the addresses that 
refer to the read area. If the program had been 
written in absolute, it would mean inserting the 
two instructions at some appropriate place, such 
as just before the rounding, and changing a num­
ber of absolute addresses. The insertion of the 
two instructions would require moving all instruc­
tions following the insertion, and changing the ad­
dresses would require rewriting all those instruc­
tions and repunching the instruction cards. Even 
in this elementary program, we can see that a small 
change can result in program changes requiring 
nearly as much work as the initial programming. 

To change the symbolic program we start with 
the source program deck. Since almost nothing in 
the source program commits us to specific locations 
in storage, changes in the source program are much 
easier. The two instructions can be punched on 
cards and inserted at the proper place in the source 

SYMBOLIC PROGRAMMING 51 

program. At this point we may note a feature of 
line numbers that are preprinted on the form: they 
all end in zero. This means that as many as nine 
instructions can be inserted between any two orig­
inal instructions without destroying the sequence 
of line numbers. For instance, if the Read a Card 
and the Add instructions were to be inserted be­
tween lines 120 and 130, they could be given the 
line numbers 121 and 122 without in any way dis­
turbing the line number sequence. This is valuable, 
for by using a page number (at the upper right 
of the form) and a line number the sequence of the 
source program cards can be defined as a protection 
against mistakes in handling the source program 
deck. While we are on the general subject, we may 
note also that the program identification can be 
punched in colurims 76 to 80 to provide an iden­
tification of the program deck, further reducing the 
possibility of mixups. 

With the program written in symbolic form, the 
change in the location of the card field is almost 
completely solved by changing the address of the 
DS instruction that defines the field. On line 180 
it is necessary only to change 0010 to 0023, which 
will change the absolute equivalent of the symbol 
when the program is reassembled. However, re­
member that a word mark was set in the high-order 
position of this field and that an absolute address 
was used. If this address is not changed, the field 
will be incorrectly defined. This could be handled 
by changing the address of the Set Word Mark in­
struction to 0014, but a better procedure would 
have been to write the address in symbolic, with 
character adjustment, so that no change in field 
position could create this particular problem. 

Now when the program is reassembled, which is 
a simple matter, all of the addresses in the program 
that are written as READl will be changed. As 
a matter of fact, we note further that the insertion 
of the two new instructions changes the storage 
assignments of the ROUND and TOTAL fields so 
that the reassembly changes virtually every ad­
dress in the program. This is of no concern to us, 
since the processor takes care of the whole matter 
in a few minutes. The new assembly listing is 
shown in Figure 4.4. 

It may seem a little strange to put so much em­
phasis on designing programs so that modifications 
are easy to make. It might be thought that once 
the program is written it could be forgotten. The 
actual fact is, that virtually all programs change 
constantly in use, either because improvements in 



52 IBM 1401 PROGRAMMING 

the program are possible or because the problem 
specifications themselves change. It is not un­
usual for one progr~mmer to be assigned the ex­
clusive responsibility of making program changes. 
The wise procedures designer and programmer give 
considerable thought to ease of modification before 
the programming is done. Symbolic programming, 
properly used, is of great value in providing this 
simplicity of modification. 

REVIEW QUESTIONS 

1. Which of the following are allowable SPS symbols? 
CAT, K, FG7YN, G74N, ABCDEDF, H&89, GROSSPAY, 
NET PAY, NETPAY. 

2. Explain the relation between the source program 
and the object program. When is the object program 
executed in relation to the assembly? 

3. Could SPS be used to write a program with no 
mnemonic operation codes and no symbolic addresses? 

4. When character adjustment is used, do the symbolic 
address and the character adjustment over get into the 
object program separately? 

5. Absolute addresses are written on the SPS coding 
form as four digits. Does this mean that they appear as 
four digits in the object program? 

4.2 Further Information on the SPS 
Language and Processor 

DCW and END are only two of the "instructions" 
to the processor. After considering some of the 
other symbolic instructions or pseudo instructions, 

PG LIN CT LABEL OP A OPERAND B OP[RArJD 

010 4 START CS 0080 
020 '" CS 0299 
030 4 CS 0332 
040 4 sw READ1 -009 
050 1 REPEAT R 
060 7 Mew READ1 TOTAL 
070 1 R 
080 7 A READI TOTAL 
090 1 R 
100 7 A READI TOTAL 
110 1 R 
120 7 A READI TOTAL 
121 1 R 
122 7 A READI TOTAL 
130 7 A ROUND TOTAL 
140 7 Mew TOTAL -002 PRINT1 
150 4 \oj REPEAT 
160 2 ROUND DCW * 170 11 TOTAL Dew * 180 READ1 os 0023 
190 9 PRINTI Dew 0209 
200 END START 

we shall consider in a little more detail how the 
processor translates from a source program to an 
object program. 

DCW automatically puts a word mark in a high­
order character position of the constant that is de­
fined with it. The DC pseudo-instruction, which 
stands for Define Constant (no word mark), per­
forms exactly the same functions as DCW but does 
not enter a word mark. It is ordinarily used to 
define the value of a symbol and the length of a 
field, in a situation in which the word mark is 
specified on the other field in a two-address instruc­
tion. 

Both DCW and DC create constants which are 
punched on cards in the object program deck and 
are actually loaded into storage when the object 
program is loaded. This is true even if the con­
stant is all blanks. The DS pseudo-instruction, 
on the other hand, performs the functions of de­
fining the length of a field, reserving space in 
storage for this field, and, if desired, associating 
a symbolic address with the field-but it does 
not enter a constant into storage with the object 
program. It can be used when it is necessary 
to set up a storage location for intermediate or 
final results when a word mark is not needed in 
the field. The DS pseudo-instruction can also be 
used for the sole purpose of defining the absolute 
equivalent of a symbol by not putting anything in 
the count field. In the example of Section 4.1, for 
instance, a DS instruction was used to specify to 
the processor that READ1 was to stand for 0010. 

0 LOC INSTRUCTION COMMENTS 

0333 I 080 CLEAR READ 
0337 I 299 AND PRINT 
0341 I 332 STORAGE AREAS 
0345 , 014 SET 101.., 
0349 1 READ 
0350 M 023 419 CARDS 
0357 1 AND 
0358 A 023 419 FORM 
0365 1 TOTAL 
0366 A 023 419 
0373 1 
0374 A 023 419 
0381 1 
0382 A 023 419 
0389 A 408 419 ROUND TO $ 
0396 M 417 209 MOVE $ ONLY 
0403 2 349 PRINT & REPEAT 

50 0408 
0419 
0023 
0209 

I 333 080 

Figure 4.4. Assembly listing of a slightly modified version of the program of Figure 4.1. 



Situations will often arise in which this is useful. 
Origin is a pseudo-instruction which has the sym­

bolic operation code ORG. The only other field on 
such an instruction should be an absolute address 
in the A-operand portion. The processor will in­
terpret this as an order to place the next character 
of the program in the location specified by the abso­
lute address. This is most commonly used to indi­
cate where the first instruction of the program 
should be located. In the absence of such an ORG 
at the beginning of the program, the first instruction 
is automatically placed in 333, which is the first 
location beyond the print area. It is also permissi­
ble, however, to have an origin instruction elsewhere 
than the beginning, or even to have several of them. 
Several might be useful, for instance, if it were 'de­
sired to place the constants and the working storage 
in a group separated from the program. 

A clearer understanding of the mechanics of the 
assembly process' will be useful in writing correct 
SPS programs and avoiding certain types of errors. 
The operation of this processor program can best 
be explained in terms of an example. Let us see 
what the processor program would do in assembling 
the program of Figure 4.1. 

With the program punched on cards having the 
column assignments shown on the coding sheet, the 
assembly can begin. The operation of the processor 
in doing this assembly consists of two rather dis­
tinct phases or passes. In the first pass the proces­
sor does little more than establish the meanings of 
the symbols and translate the mnemonic operation 
codes to actual. The processor does this by deter­
mining the storage location to be associated with 
each symbol, as it reads the entire program. 

At the beginning of the program the processor as­
sumes that the first character of the program will 
later be loaded into location 333 unless it finds an 
origin card that specifies some other starting loca­
tion. In the program in Figure 4.1, therefore, the 
label START would be entered into a label table 
along with its absolute equivalent of 333. In order 
to keep track of the amount of storage required by 
the instructions and data in a program, the proces­
sor must inspect each instruction or data word to 
determine its length. The first instruction would 
require four characters (the operation code and one 
address). If a label appeared on the next instruc­
tion, therefore, it would be given the absolute 
equivalent of 337. Proceeding in this manner, we 
see that symbol REPEAT would be entered into the 
label table with the absolute equivalent 349. The 

SYMBOLIC PROGRAMMING 53 

technique by which the processor keeps track of 
the location to which each symbol is equivalent in­
volves what is called the location counter. This is 
a field within the processor program which is started 
at 333, or whatever location is specified by the 
origin instruction, and is increased-as each card is 
read-by the number of characters needed to store 
the object program information created by that 
card. Any time another origin card is detected the 
location counter is given the value specified on the 
origin card without regard for previous contents of 
the location counter. 

In our example the location counter would start 
at 333 and be increased by the length of each 
instruction, as all of the instructions are read. 
Finally, it would reach the first constant at the 
end of the instructions; now the location counter 
must be increased by the length of the constant as 
given in the count field. Furthermore, constants 
and data are addressed by their low-order charac­
ters rather than the high-order by which instruc­
tions are addressed. Therefore, the label ROUND 
is associated with the address 400, not 399. Pro­
ceeding similarly, TOTAL would be entered in the 
label table as equivalent to 411. READ1 is made 
equivalent to 0010 and PRINT1 is made equivalent 
to 0209, since the actual addresses are specified in 
the source program. When the processor detects 
the END card, it stops reading cards and prepares 
for the second pass. 

Notice that the processor has really not done 
much with the instructions so far. No symbolic 
addresses have been changed to absolute; this would 
clearly be impossible. For instance, the processor 
could not translate the symbolic address READ1 
into an absolute address because at the time it finds 
this address it has not yet established the absolute 
equivalent of the symbol. This is the basic idea 
behind the two-pass operation. 

On the second pass the processor uses the infor­
mation in the label table to assemble absolute in­
structions as the source program cards are read 
again. The information in the label field (columns 
8 to 13) is not used on the second pass; this infor­
mation was needed only to define the absolute 
equivalents of the symbols. This time, as the first 
card is read, the four-digit address is converted to 
the three-character form. The assembled instruc­
tion is then punched into a card along with infor­
mation to tell a subsequent loading program where 
in storage to put the instruction and its word 
mark. This process is carried out for each instruc-



54 IBM 1401 PROGRAMMING 

tion as the cards are read. Whenever a symbolic 
address is found, the processor consults the label 
table to find the absolute equivalent in order to 
assemble the instruction. When an instruction is 
found that has character adjustment, the amount 
of the adjustment is added to or subtracted from 
the absolute equivalent found in the label table. 

The constants are recognized by their operation 
codes as constants rather than as instructions and 
are assembled properly. In our program the 50, 
which is referred to by the symbol ROUND and the 
absolute address 400, would be punched on a card 
for loading with the object program. The other 
DCW constants are blanks; these would also be 
put on cards for loading. For the purpose of our 
program it would be necessary only that sufficient 
information be punched on the card for setting a 
word mark; however, there is no provision in the 
SPS system for doing anything but literally loading 
the blanks. On the second pass the END card in 
the source program would cause the creation of a 
transition card in the object program. This card 
would be the last of the object deck and therefore 
would be read after the entire program had been 
loaded. It later causes the obj ect program to take 
control of the computer system, starting with the 
instruction specified by the address in the END 
instruction. 

It should be emphasized once again that the result 
of the assembly is only the creation of an object 
deck. The object program is not executed and it 
is not even left in storage ready to be executed. 
With the assembly complete (and ordinarily with 
some checking for correctness), the object program 
can then be loaded into storage and executed. 

REVIEW QUESTIONS 

1. What is the difference between DeW and DC? 
Does either of them allow a symbol to be defined without 
loading anything into storage with the object program 
deck? How can this be done? 

2. Why must SPS use two passes in assembling a 
program? 

3. Suppose the same origin were given before the in­
structions and before the constants. What will happen 
when the object program is loaded? 

4. What would happen if a symbol were used in the 
address part of the instructions in the program but 
never appeared in the label column? Would the proces­
sor have any way of establishing the absolute equivalent 
of the symbol? 

5. What would happen if a symbol were written in 
two places in the label column? Would the processor 

have any way of knowing which one establishes the 
definition of the symbol? 

4.3 Case Study: Payroll 

The following case study gives us another op­
portunity to see how symbolic programming is used 
and at the same time introduces three new instruc­
tions. 

The problem is a greatly simplified element of 
a payroll calculation. Weare given an input deck 
which consists alternately of payroll master cards 
and labor vouchers. The first card of the deck is 
a master, the second is a detail for the same man, 
the third is a master for the next man, the fourth 
is that man's detail, etc. Master cards have the 
pay number in columns 1 to 5, the name in columns 
10 to 29, and the hourly pay rate in columns 53 to 
56. The pay rate is given in dollars per hour to 
three decimals. A detail card has the pay number 
in columns 1 to 5 and the hours worked, to hun­
dredths of an hour, in columns 12 to 15. Both cards 
in practice would contain other information. Our 
job is to read the cards, compute the gross pay, as­
suming no overtime, and print the pay number, 
name, and gross pay (to the nearest penny) on the 
printer. This is to be done for each man in the 
deck, without considering how to detect the last 
card (this problem is considered in the next sec­
tion) . The gross pay is to be printed with a dollar 
sign and a decimal point and with any leading zeros 
suppressed. 

The source program is shown in Figure 4.5, in 
which separate pages have been used for instruc­
tions and constants. This incidentally is a com­
mon way to write a symbolic program; often the 
constants are entered on a separate page as they are 
first used in the program. 

The program begins in this case with an origin 
instruction, which is used here primarily to illus­
trate the technique. It might be used in practice 
to avoid some other standard routine in the first 
part of available storage. After that, we clear the 
read and print storage areas and set word marks, 
as before. Then we read the first card of the data 
deck, which is a master card. We move the infor­
mation on it from the read area to the print area 
and to a working storage area. This is done with a 
new instruction called Load Characters to A Word 
Mark. This instruction is somewhat analogous to 
the Move instruction but with a significant differ-



ence in the treatment of word marks. It requires 
that only the A-field have a word mark, and it is 
this word mark that stops the transmission of char­
acters. Any word marks in the B-field are cleared, 
and the word mark from the A-field is transferred 
to the corresponding position in the B-field. This 
instruction can obviously be used only if the field 
to which the data is being moved is the same length 
as the source field; however, this is often the case 
and, when it is, the instruction removes the neces­
sity of setting a word mark in the B field. 

The third LCA instruction, written with charac­
ter adjustment, moves the hourly pay rate to the 
multiplier field. The next instruction reads the 
detail card, obtains the hours worked in the HOURS 
field, and we are ready to multiply to get the gross 
pay. 

Multiplication in the 1401 is a special feature 
that permits use of built-in machine hardware. (In 
the absence of this special feature multiplication 
can be programmed.) On a Multiply instruction 
the A-address specifies the units position of the 
multiplicand; this field must have a word mark. 
The B-address of a Multiply instruction addresses 
the units position of a rather special field which 
initially contains the multiplier and in the end 
contains the product. The multiplier must be in 
the high-order positions of this special field before 
the instruction is executed. The field must be one 
character position longer than the sum of the num­
ber of digits in the multiplier and the multiplicand. 
For instance, in our case we have four digits each; 
therefore, the field has been established as nine 
character positions long. (This requirement is 
based on the way the machine multiplies.) 

One of the numbers that are multiplied in this 

Load Characters to A Word Mark 

FORMAT 
Mnemonic 

LCA 

Op Code 

L 

SYMBOLIC PROGRAMMING 55 

operation has three places to the right of the deci­
mal point, and the other has two to the right. These 
decimal points are, of course, not punched on the 
card; they are understood. To interpret the result, 
we must decide where we understand the decimal 
point of the product to be. This can be obtained 
by applying the usual rule: the number of places 
to the right of the point in the product is equal to 
the number of places to the right of the point in 
the multiplier plus the number of places to the 
right in the multiplicand. This means that the 
eight-digit product will have five decimal places. 
\Ve want to round this product to the nearest cent, 
which requires adding a 5 one position to the right 
of the pennies amount. This turns out to be two 
characters to the left of the units position of the 
field, and we add the 5 to the product field with a 
character adjustment of - 2. 

The gross pay is now available in storage, rounded 
to the nearest penny. Before printing it, however, 
we would like to insert a decimal point between 
the dollars and cents, arrange to print a dollar sign, 
and delete any zeros in front of the first significant 
digit. All of this can be done with the Move Char­
acters and Edit instruction. This instruction re­
quires the use of an edit word that contains the 
characters to be inserted in the edited amount, 
along with (in our case) a character to signal the 
use of zero suppression. The edit word is first 
loaded to the print storage area. This edit word 
is $bbO.bb, where the b's stand for blanks, as shown 
in the constants in Figure 4.5. When the Move 
Characters and Edit instruction is executed, the 
data from the A-field is inserted into the character 
position in the B-field occupied by blanks or zeros, 
and high-order zeros are replaced with blanks. 

A-address B-address 

xxx xxx 

FUNCTION This instruction is commonly used to load data into the printer or punch areas of storage 
and also to transfer data or instructions from the read-in area to another storage area. The data and word 
mark from the A-field are transferred to the B-field, and all other word marks in the B-field are cleared. 

WORD MARKS The A-field must have a defining word mark because the A-field word mark stops the 
operation. 

TIMING T = 0.0115 eLI + 1 + 2LA)ms. 



56 IBM 1401 PROGRAMMING 

Multiply 

FORMAT 
Mnemonic 

M 

Op Code 

@ 

A-address B-address 

xxx xxx 

FUNCTION The multiplicand (data located in the A-field) is repetitively added to the data in the B-field. 
The B-field contains the multiplier in the high-order positions and enough additional positions to allow for 
the development of the product. At the end of the multiply operation the units position of the product is 
located at the B-address. The multiplier is destroyed in the B-field as the product is developed. Therefore, 
if the multiplier is needed for subsequent operations, it must be retained in another storage area. 

Rule 1. The product is developed in the B-field. The length of the B-field is determined by adding "I" 
to the sum of the number of digits in the multiplicand and multiplier fields. 

Example. 

1246 
X 543 

4-digit multiplicand 
3-digit multiplier 

+1 

8 positions must be allowed in the B-field. 

Rule 2. A word mark must be associated with the high-order positions of both the multiplier and multi­
plicand fields. 

Rule 3. A- and B-bits need not be present in the units positions of the multiplier and multiplicand fields. 
The absence of zone bits in these positions indicates a positive sign. At the completion of the multiply 
operation the B-field will have zone bits in the units position of the product only. The multiply operation 
uses algebraic sign control: 

Multiplier sign 
Multiplicand sign 
Sign of product 

+ 
+ 
+ 

+ 
+ 

+ 

Rule 4. Zone bits that appear in the multiplicand field are undisturbed by the multiply operation. Zone 
bits in the units position of the multiplicand are interpreted for sign control. 

WORD MARKS A word mark must be associated with the high-order positions of the multiplier and 
multiplicand fields. 

TIMING The average time required for a multiply operation is 

T = 0.0115 

(LI + 3 + 2Lc + 5LcLM + 7L M)ms. 

Lc = length of multiplicand field. 

LM = length of multiplier field. 

N ole. The first addition within the multiply operation inserts zeros in the product field from the storage 
location specified by the B-address up to the units position of the multiplier. 



A few examples will show what can be done with 
this powerful instruction. 

A-field 

08828 

08828 

B-field 
before 

$bbO.bb 

$bbb.bb 

B-field 
after 

$b88.28 

$088.28 

The zero in the edit word calls for zero suppression 
and also defines the rightmost character position to 
which it is to be applied, as this example shows: 

00067 $bOb.bb $bbO.67 

(A) OPERAND 

LINE COUNT LABEL OPERATION CHAR. ~ ADDRESS 

SYMBOLIC PROGRAMMING 57 

Zero suppression applies to commas to the left of 
the first significant digit: 

000294368 b, bbb, bbO.bb bbbb2, 943.68 

This instruction performs certain other editing 
operations also, as described in the summary box. 

The A-field on a Move Characters and Edit in­
struction is required not to have more characters 
than the number of zeros and blanks in the edit 
word. Since the multiplication process always puts 
a zero in the high-order character of the product, 
it is necessary to set a word mark one position to 

Page No. L..1.J of 2 
I Z 

(B) OPERAND 

CHAR. ~ d COMMENTS 
ADDRESS 

3 5 6 7 8 13 14 16 17 I;J ADJ. 
27 28 I~I ADJ. 

38 39 40 55 

0 I 0 I(J,R'G 0,600 I I I I , ' 

I I I I 

0 2 0 BE.G IN cs l OOtJO : I I I CL EAR. R.EA'D I I I 

o 3 0 cs l 0299 I I : I AND PR.IN.T, I I I 

0 4 0 Cs' 0332 I I I : ST.¢.R.AGE AREAS I I I 

o 5 0 sw. PA Y N¢, :-:00,4- NAM.E, :-:019 SE.T 
o 6 0 5W' PA Y R T £1-100,3 H (J,URS :-:003 w'M .' 
o 7 0 PR.¢,G R 

, I I I M.A S T E R __ -_ I I I 

o 8 0 L C~A PA Y N.ed, I PRIMTI: I PA Y. NUMBER I I 

o 9 0 L CiA NAME I PR.IM r.2: , 
NAME I I 

I o 0 L CiA PA Y,RTE: MULT. :-:005 PAY RA T.E 
I I 0 II<, ( I I I DE.T.AIL I I I 

I 2 0 M 
, II. ¢,u, RS I MULT : I GET. 6R¢,SS PA Y I I 

I 3 0 A : R.r/J,U ND I MULr. :-:002 1R,¢tJ ND T,¢ CENTS I 

I 4 0 LelA ED.IT I PR I NT..3t I 
I J 

I 5 0 5W! M.ULT :-1007 I I 
I I 

I 6 0 Me'E MULT :-:003 PRINT.gj I EDI T G R(j,SS I 

I 7 0 cwl M,lJ.LT. :-:007 I I 
I 'I 

I 8 0 w: PR,¢,G I I I I PRJ N To AND R,EPEAT I I I I 
I I I I I 

I 9 0 I I I I I 

2 0, 0. - , 
.-~ I I : I -~ - ...... - --

Page No. ~ of __ 2. __ 
I 2 

(A) OPERAND (B) OPERAND 

LINE COUNT LABEL OPERATION I;J CHAR. ~ I~I CHAR. ~ d COMMENTS 
ADDRESS ~DDRESS 

3 5 6 7 8 13 14 16 17 
ADJ. 

27 28 
ADJ. 

38 39 40 55 

0 I 0 -¢.R'C; 0800 
0 2 0 PA Y Nt) OSI 0005 
0 3 0 NAME OSI 0029 
0 4 0 PA Y R ~E OS' 0056 
0 5 0 /I ¢,U RS D5 1 001.3 
0 6 0 PR.INTI OS' 02.05 
0 7 0 P R.£!£T 2 OS' 0230 
o a 0 P,RI N T3 OS' 024.3 
o 9 00/ R¢,UND oc'w ~ 15 
I ,0 0 07 E.O I T DC:W * :# o. 

o 09 MULT oc'W* I 
I I I 

I 2 0 ENID BEGIN I 
I I 

I 3 0 : I I 
I I .....--- - --~ --- - I ------ -:-- -

Figure 4.5. SPS program to compute and print gross pay from hours worked and pay rate read from cards. 



58 IBM 1401 PROGRAMMING 

the right of the high-order character in order to 
sa tisfy this rule. * After the editing has been per­
formed the word mark should be removed so that 

it will not disturb later operations with this field 
when the next card is read. 

With the edited gross pay in the print area, it 
is now possible to write the line on the printer and 
branch back to PROG to read another card and 
start over. 

* An alternative solution, and perhaps a better one, 
would be to make the edit word one character longer by 
adding a blank at the left. 

Move Characters and Edit 

FORMAT 

Mnemonic 

MCE 

Op Code 

E 

A-address B-address 

xxx xxx 

FUNCTION The Move Characters and Edit instruction modifies the data in the A-field by the contents 
of the edit-control word in the B-field and stores the result in the B-field. 

Define the body of the edit-control word as the part beginning with the rightmost blank or zero and con­
tinuing to the left until the A-field word mark is sensed. The remaining portion is called the status portion. 

The following rules control the editing operation. 

Rule 1. All numerical, alphabetic, and special characters can be used in the control word. However, 
some of these have special meanings: 

Control 
Character 

b (blank) 

o (zero) 

. (period) 
, (comma) 

CR (credit) 

- (minus) 

& (ampersand) 

* (asterisk) 

# (dollar sign) 

Function 

This is replaced with the character from the corresponding position of the A-field. 

This is used for zero suppression and is replaced with a corresponding character from the 
A-field. Also the right-most 0 in the control word indicates the right-most limit of zero sup­
pression . 

This is undisturbed in the punctuated data field, in the position where written. 
This is undisturbed in the punctuated data field, in the position where written, unless zero sup­
pression takes place, and no significant numerical characters are found to the left of the 
comma. 

This is undisturbed in the status portion if the data sign is negative. It is deleted if the data 
sign is positive. Can be used in body of control word without being subject to sign control. 

Handled in the same way as CR. 

This causes a space in the edited field. It can be used in multiples. 

This can be used in singular or in multiple, usually to indicate class of total. 

This is undisturbed in the position where it is written. 

Rule 2. A word mark with the high-order position of the B-field controls operation. 
Rule 3. When the A-field word mark is sensed, the remaining commas in the control field are set to 

blanks. 
Rule 4. The data field can contain fewer, but must not contain more, positions than the number of blanks 

and zeros in the body of the control word. 

TIMING T = 0.0115 (LI + 1 + LA + LB + Ly)ms. 



The constants are shown preceded by an orIgm 
instruction, which once again is used mostly for 
illustrative purposes. 

The definitions of the read and print area fields 
are all made with DS instructions, since nothing 
can be accomplished with any of them by loading 
word marks into storage. Word marks are not 
needed in the print area, and anyway it is not per­
missible to load constants into the read area. 

The DeW with the label ROUND is used to 
enter a 5 for rounding; the EDIT DeW puts into 
storage the edit constant; and the MULT DeW 
sets up the working storage location for the multi­
plier and the product. These last three DeW in­
structions are shown with an asterisk in the address 
field, to indicate that the processor may assign these 
constants in sequence as the program is assembled. 
Notice on the assembly listing in Figure 4.6 that the 
rounding constant is to be loaded into character 
position 800; the seven pseudo-instructions between 
the origin and this DeW had no effect on the loca­
tion counter since they specified absolute locations 
for the symbols. The END instruction, as usual, 
specifies that no more source program cards follow, 
and the address will cause the object program to 
begin executing instructions at the address shown. 

Note that the comments that were written on the 
coding sheets have been transferred to the assembly 
listing. They have no effect on the assembly and 

PG LIN CT LABEL OP A OPERAND B OPERAND 

I 010 
1 020 
1 030 
1 040 
1 050 , 060 , 070 
1 080 
1 090 
1 100 , 110 
1 120 
I 130 
1 140 
1 150 
1 160 
1 170 
1 180 
2 010 
2 020 
2 030 
2 040 
2 050 
2 060 
2 070 
2 080 
2 090 
2 100 
2 110 
2 120 

4 BEGIN 
4 
4 
7 
7 
1 PROG 
7 
7 
7 
1 
7 
7 
7 
4 
7 
I, 

4 

PAYNO 
NAME 
PAYRTE 
HOURS 
PRINTl 
PRINT2 
P~ I NT3 

1 ROUND 
7 EDIT 
9 MULT 

ORG 0600 
CS 0080 
CS 0299 
CS 0332 
SW PAYNO -004 NAME -019 
SW PAYR TE-003 HOUCtS -003 
R 
LCA PAYNO PRINTI 
LC/\ NAME PRINT2 
LCA PAYRTE MUll -005 
R 
M HOURS MULT 
A ROUND MUll -002 
LCA EDIT PRINT3 
SW MUll -007 
MCE MULT -003 PRINT3 
CW MULT -007 
W PROG 
ORG 0800 
OS 0005 
OS 0029 
OS 0056 
OS 0015 
OS 0205 
OS 0230 
OS 0243 
DCW * 
DCW * ocw * 
END BEGIN 

SYMBOLIC PROGRAMMING 59 

are provided for the convenience of the programmer 
and for others who may have to read the program. 
The use of comments is strongly recommended. 

REVIEW QUESTIONS 

1. What is the difference between the instructions 
Move Characters to A or B Word Mark and Load Char­
acters to A Word Mark? 

2. Describe the operation of the Multiply instruction. 
3. What characters in the control word (edit word) 

are always replaced by characters from the A-field? 
4. Discuss the reasons for using a combination of DS 

and DCW pseudo-instructions in this program. Could 
DCW be used throughout? Could DS be used through­
out? 

5. How would the object program be changed if both 
ORG instructions were omitted? Would the execution 
of the object program give the same results? 

EXERCISES 

*1. Give the absolute equivalent of each symbol in the 
program of Figure 4.1 (before the corrections). 

2. Give the absolute equivalent of each symbol in the 
program of Figure 4.5. 

*3. "Assemble" the program shown in Figure 4.7 "by 
hand"; that is, carry out the same analysis of the sym­
bolic program that the SPS processor would do, ending 
with an absolute program. 

4. Assemble the program shown in Figure 4.8 by hand. 

0 lOC INSTRUCTION COMMENTS 

0600 / 080 CLEAR READ 
0604 / 299 AND PRINT 
0608 / 332 STORAGE AREAS 
0612 , 001 010 SET 
0619 , 053 012 WM 
0626 1 MASTER 
0627 L 005 205 PAY NUMBER 
0634 L 029 230 NAME 
0641 L 056 811 PAY RATE 
0648 1 DETAIL 
0649 t@ 015 816 GET GROSS PAY 
0656 A 800 814 ROUND TO CENTS 
0663 L 807 243 
0670 , 809 
0674 E 813 243 EDIT GROSS 
0681 [J 809 
0685 2 626 PRINT AND REPEAT 

0005 
0029 
0056 
0015 
0205 
0230 
0243 

5 0800 
$ o. 0807 

0816 
I 600 080 

Figure 4.6. Assembly listing of the program of Figure 4.5. 



60 IBM 1401 PROGRAMMING 

Page No.l--LLJ of __ I __ 
I 2 

(AI OPERAND (BI OPERAND 

LINE COUNT LABEL OPERATION I;J CHAR. ~ I~I CHAR. g d COMMENTS 
ADDRESS ADDRESS 

3 5 6 7 8 13 14 16 17 
ADJ. 

27 28 
ADJ. 

38 39 40 55 

0 I 0 I~R'G 0500 I I I I 
I I I I 

0 2 0 ABC CS I 0080 I I I I 
I I I I 

o 3 0 C5' 0299 I I I I 
I I I I 

0 4 0 CS I 0332 I I I : I I I 

o 5 0 SW I AI 1-:004- A2 :-:004 
o 6 0 S WI A3 -:004- 81 :-100.3 
o 7 0 BCD R I I I 

I I 

o 8 0 A I A I I T¢,T I 
I I 

o 9 0 A I A2 I Tr/J,T I 
I I 

I o 0 S I A3 I T(J,~ I 
I I 

A l flALFO I T (/J, To I - 001 I I 0 I 

I 2 0 MCIS T.¢,T -:002 BI 
I 3 0 W : BCD I 

I 

I 4 0 A I Dsl 0005 I 
I 

I 5 0 A2 DSI 00/0 I 
I 

I 6 0 A3 DS' 00/5 I 
I ,. 

I 7 0 8/ DS' 02/0 I I 
I I 

I 8 006 T,¢.~ DC:W ¥ :000 000 I 
I 

I 9 0 0/ H.ALFD DC:W ¥ :5 I 
I 

2 0 0 END ABC I 
I 

I 
I I 

I I I I 
I I I - .J--_- - - -1----- i.-- --------Figure 4.7. SPS program for Exercise 3. 

Page No. ~ of __ 1 __ 

(AI OPERAND (BI OPERAND 

LINE COUNT LABEL OPERATION I;J CHAR. g I~I CHAR. g d COMMENTS 
ADDRESS ADDRESS 

3 5 6 7 8 13 14 16 17 
ADJ. 

27 28 
ADJ. 

38 39 40 55 

I~R'G 0700 I I I I 
0 I 0 I I I I 

HE.RE CSI 0080 : I I I 
0 2 0 I I I 

CS' 0/80 I I I , 
o 3 0 I I I I 

0 4 0 Sw. DATAl 1-1004 DATA2 :-:006 
RE.AD R I : o 5 0 

o 6 0 L ciA DATAl PUNCH/: 
o 7 0 L CiA EDIT P U N.C #2: 
o 8 0 MC '£ o A T.A 2 PUNCH21 

P I READ o 9 0 

I o 0 DA TA / .0 5: 0005 
I I 0 DATA 2 DSI 0023 
I 2 0 PUNCH / .051 0/05 I 

1 3 0 PUNCH2 .05 1 0115 I 
I 

1 4 0 /0 E.OI T Dslw ¥ :.fI, o. , , 
ENID HERE I 

1 5 0 I 

1 6 0 
I I 

I _.- - I - _--.1. - -'- I -'-- - - - - -
Figure 4.8. SPS program for Exercise 4. 



5. What is wrong with the following reasoning? It is 
desired to set up a program to handle data cards on 
which the fields are of variable position. To handle this, 
the absolute addresses of the field-defining DS instruc­
tions are given by additional numbers on the data cards. 

6. Extend the program of the Case Study as follows. 
For each man, there are three cards: the first and second 
are as before, and the third gives the man's deductions. 
The format of the deductions card is 

Cols 1-5 
6-8 
9-12 

13-16 
17-20 

Pay number 
Social security 
Withholding tax 
Savings bonds 
Union dues 

SYMBOLIC PROGRAMMING 61 

The processing now consists of computing the gross pay 
and the net pay. For each man, a line should be printed 
as follows: 

Positions 1-5 
11-30 
36-41 
47-50 
56-60 
66-70 
76-80 
86-91 

Pay number 
Name 
Gross pay 
Social security 
Withholding tax 
Savings bonds 
Union dues 
Net pay 

The six dollar amounts should be printed with decimal 
points but without dollar signs. 



5. 

62 

BRANCHING 

5.1 Fundamentals of Branching 

In Chapter 4 we saw an example of a 
branching operation in connection with the 
last instructions of the two sample programs. 
These instructions were set up so that after 
the line had been printed the next instruction 
executed was not the next one in storage 
but the one specified by the address part of 
the Write instruction. This is the simplest 
example of branching, which is the process 
of breaking out of the one-after-the-other 
sequence of storage locations from which in­
structions are normally executed in the 1401 
(and in most machines) . 

The vVriLe and Branch insLruction is an 
example of an unconditional branch: the next 
instruction is to be taken from the location 
specified by the address of the branch in­
struction, regardless of any condition in the 
machine. This can also be done as a sepa­
rate operation, not combined with input or 
output, by using the Branch instruction. 
The actual and mnemonic operation codes 
are the same, B. The unconditional Branch 

Card 
field 

7-13 
4-5 

18-30 
37-40 

(field to be 
summed) 

TABLE 5.1 

1-7 
11-12 
16-28 

Printing 
field 

30-35 sum on line 
below body of report 

instruction has one address, which specifies 
the location of the next instruction to be 
executed. This is called the I -address, or 
instruction address, to emphasize that it 
refers to an instruction, but it is. written in 
the same position as the A-address. 

The more powerful application of the 
branching idea is in the use of conditional 
branch instructions. With these, the next 
instruction is taken from the specified ad­
dress only if some condition in the machine 
is present; otherwise, the next sequential in­
struction is executed. There are several con­
ditional branch instructions in the 1401. The 
simplest of them is the Branch If Indicator 
On instruction. Here the d-character is used 
to specify what condition in the machine is 
to be tested, as shown in the summary box. 

On a Branch If Indicatur On instruction 
the instruction operates as an unconditional 
Branch if the d-character is a blank. This 
means, in effect, that if the last instruction 
of a program is a Branch, with blank storage 
following, there is no need to put a word 
mark in the character position immediately 
following the last instruction. (It is neces­
sary to do so otherwise.) 

For an example of the use of a conditional 
Branch, consider the following simple ex­
ample. Weare required to read a deck of 
less than a hundred cards, print certain items 
of the information on them, and print the 
total of one of the fields when the last card 
has been read. Suppose that the field assign­
ments are as listed in Table 5.1. 

The first two printing fields are to be zero­
suppressed, that is, any leading zeros are to 
be omitted in the printing. 



This is not so different from the examples we have 
seen before, for there are only two new features. 
The detection of the last card of the deck can be 
done with a Branch If Indicator On instruction in 
which the d-character is A, which designates the 
last card indicator. If sense switch A is on and 
the last card in the hopper has been read, the 
branch is taken. If sense switch A is on and cards 
remain in the hopper, the next sequential instruc­
tion is taken. If sense switch A is off and the last 
card has been read, the machine halts. 

The suppression of leading zeros is a matter of 
ease of use of reports. In most business reports the 
meaning of a number such as 0008904 is not changed 
by printing it as 8904, and the report has a neater 
appearance with the zeros omitted. This applies 
only to leading zeros; the number should not be 
printed as 89 4. This supression of leading zeros 
is easily accomplished with the Move Characters 
and Suppress Zeros instruction, which has the actual 
operation code Z and the mnemonic MCS. The 
instruction moves characters from the A-field to 
the B-field, stopping upon detection of a word mark 
in the A-field. Word marks in the B-field are not 
inspected and are in fact erased. Any high-order 
zeros are then replaced by blanks. 

The symbolic program to do this job is shown in 
Figure 5.1. As usual, we begin by clearing the read 
and print storage areas and setting word marks in 
the read area. The Read a Card instruction is 
given a label so that it is possible to refer to it with 
a later instruction. The numbers for the first two 
printing fields are moved with a Move Characters 
and Suppress Zeros instruction, and the third 
(which was not to be zero-suppressed) is moved 
with a Load Characters to a Word Mark instruc­
tion. Then the card field which is being summed 
is added into a counter called TOTAL. 

Branch 

FORMAT 

BRANCHING 63 

This much of the program sets up the printing 
line and forms the sum. When the line has been 
printed, the next instruction asks whether the card 
just read was the last; note the A in the d-character 
column of the coding sheet. If this was the last 
card, we branch to the symbolic location FINAL, 
where there are instructions to print the final total. 
If this was not the last card, the next sequential in­
struction is executed, which is also a Branch, but 
this time an unconditional one which takes us back 
to read the next card. 

When the last card has been processed, the con­
ditional Branch goes to a Clear Storage instruction 
to erase the recently printed detail line. The total 
is moved to the designated print position and the 
total printed. 

The last instruction, called Halt and Branch, is 
a new one. Nothing was said in the problem spe­
cification about what should be done once the total 
is printed. We therefore assume that the machine 
should be stopped to wait for another problem to be 
loaded. The Halt and Branch instruction stops the 
execution of instructions until the start button on 
the console is pressed, at which time the next in­
struction is taken from the location specified by 
the I-address. In this case the I-address was made 
the address of the first instruction of the program. 
This was done because of the possibility that when 
one deck of cards had been read, printed, and 
totaled it might be desirable to do the same thing 
with another deck. If this had not been thought 
necessary, the Halt instruction could have been 
written without an address, in which case pressing 
the start button would have caused the next sequen­
tial instruction to be executed. In our case the next 
"instruction" is not an instruction at all, as it hap­
pens, but the total that has just been printed. What 
might happen when the control circuits try to carry 

Mnemonic 

B 

Op Code 

B 

I-address 

xxx 

FUNCTION The next instruction is unconditionally taken from the storage location specified by the 
I-address. 

WORD MARKS Not affected. 

TIMING T = 0.0115 (LI + 1)ms. 



64 IBM 1401 PROGRAMMING 

Branch If Indicator On 

FORMAT 

Mnemonic 

B 

Op Code 

B 

I-address 

xxx 

d-character 

x 

FUNCTION The d-character specifies the indicator tested. If the indicator is on, the next instruction is 
taken from the location specified by the I-address. If the indicator is off, the next sequential instruction is 
taken. The valid d-characters and the indicators they test are as follows: 

* Special feature. 

d -character 

blank 
9 
@ 

A 
B 
C 
D 
E 
F 
G 
K 
L 
+ o 
-
o 
P 
+ 
/ 
R 
S 
T 
U 
z 
% 

Branch On 

Unconditional 
Carriage channel # 9 
Carriage channel # 12 
"Last card" switch (sense switch A) 
Sense switch B * 
Sense switch C * 
Sense switch D * 
Sense switch E * 
Sense switch F * 
Sense switch G * 
End of reel *t 
Tape transmission error *t 

Reader error if I/O check stop switch is off t 
Punch error if I/O check stop switch is off t 
Printer busy (print storage feature) * 
Printer error if I/O check stop switch is off t 
Unequal compare (B ~ A) 
Printer carriage busy (print storage feature) * 
Equal compare (B = A) * 
Low compare (B < A)* 
High compare (B > A) * 
Overflow t 
Processing check with process check switch off t 

t Conditions tested are reset by a Branch If Indicator On instruction. 

The indicators tested are not turned off by this instruction except as noted by t. When carriage tape­
channel 9 or 12 is sensed, the corresponding indicator is turned on. These carriage channel-indicators are 
turned off when any other carriage tape-channel is sensed. The next Compare instruction turns off the 
compare indicators. 

WORD MARKS Not affected. 

TIMING T = 0.0115 eLI + l)ms. 



Move Characters and Suppress Zeros 

FORMAT 

Mnemonic 

MCS 

Op Code 

Z 

BRANCHING 65 

A-address B-address 

xxx xxx 

FUNCTION The data in the A-field is moved to the B-field. After the move high-order zeros are re­
placed by blanks in the B-field. The sign is removed from the units position of the data field. 

WORD MARKS The A-field word mark stops transmission of data. B-field word marks encountered 
during the Move operation are erased. 

TIMING T = 0.0115 (LI + 1 + 3LA)ms. 

Page No. L..lJ of __ 2 __ 
I 2 

(A) OPERAND (B) OPERAND 

LINE COUNT LABEL OPERATION I;J CHAR. ~ I~I CHAR. g d COMMENTS 
ADDRESS ADDRESS 

3 5 6 7 8 13 14 16 17 ADJ. 
27 28 

ADJ. 
38 39 40 ~~ 

o I 0 STA R T. C Sl 0080 I I , I CL EAR. READ I I , , 
o 2 0 CS' 0299 I I I , 

A NO. PRINT I I I I 

o 3 0 C 51 0332 I I I , 
ARE AS I I I I 

o 4 0 SW' RI :-:006 R2 :-:00 I SET 
o ~ 0 SW' R3 '-10 I 2 R4 '-'003 WMS 
o 6 0 REA D R I 

o 7 0 Me'S RI PI M,¢,v E DATA 
o 8 0 MCls R2 P2 T,¢, PRINT 
o 9 0 L ciA R3 P3 AREA 
, o 0 A I R4 T.¢,TA L A CCUMU.L A T£ 
I I 0 W I 

I 2 0 B, I F INA L A LAST CAR.D ,f}, 

I 3 0 B 1 READ 
I 4 0 ~INAL C5 1 0299 CLEAR ST,r/J,RAGE £ 
I ~ 0 MC1S T (j, TAL P4 WRIT.E 
I 6 0 ~ I F.I.NAL T ¢, TA L 

II I S TA RT: I 7 0 

I 8 0 
I 

..J.-"'- - I - ~ 

Page No. ~ of 2 
I 2 

(A) OPERAND (B) OPERAND 

LINE COUNT LABEL OPERATION I i,l CHAR. ~ I~I CHAR. g d COMMENTS 
ADDRESS ADDRESS 

3 5 6 7 8 13 14 16 17 23 ADJ. 27 28 
ADJ. 

38 39 40 55 

0 I o 06 T¢, T A Z OCIW * 000 000 
0 2 0 RI OSI 0013 
o 3 0 R2 DSI 0005 
0 4 0 R3 DSl 0030 
0 5 0 R4 OS' 0040 
0 6 0 PI DS' 0207 
o 7 0 P2 OSI 0212 
o 8 0 p.3. DS' 0228 
o 9 0 P4 DS' 0235 { 

I o 0 ENID STAR.T. 
I I 0 I 

- - - - - -
Figure 5.1. SPS program illustrating the Branch instruction. 



66 IBM 1401 PROGRAMMING 

out this number as an instruction depends, of course, 
on what the number is. At any rate, it is not a very 
desirable situation. It is probably good practice to 
put an address on all final halts to avoid the possi­
bility of this kind of confusion. If there is really 
nothing more to be done at this point, the I-address 
of the Halt can be the location of the Halt instruc­
tion itself, so that if the start button is pressed the 
machine will simply halt again. 

REVIEW QUESTIONS 

1. What is a conditional branch instruction? 
2. Does the Move Character and Suppress Zeros in­

struction remove all zeros from the field? Does its action 
depend on a word mark in the B field? 

3. Is the last card switch changed by testing it with a 
Branch If Indicator On instruction? 

4. On a Halt and Branch instruction, when does the 
branch occur? 

5.2 Further Branching Operations 

There are a number of other types of branching 
operations besides those mentioned so far. After 
mentioning one of these briefly, we shall consider 
the most important application of the concept: its 
use in comparison of data fields. 

The next instruction to be considered is a rather 
special one that tests a single character, called 
Branch If Word Mark and/or Zone. The B-address 
specifies a character position to be tested. The 
I -address tells where to find the next instruction if 
the position satisfi~s the conditions on the word 

Halt, Halt and Branch 

FORMAT 

mark and/or zone bits specified by the d-character. 
The tests are described in the summary box. 

This instruction, it may be seen, can test for all 
combinations of word mark and zone bits. This 
feature, which is frequently applicable, saves a 
great deal of trouble. We shall find several applica­
tions for it in later chapters. 

The most useful application of branching is in 
combination with the Compare instruction, which 
lets us compare two fields in storage. The contents 
of the A- and B-fields are compared; if they are 
not the same, the unequal indicator is turned on. 
A Branch If Indicator On instruction can then be 
used to test this indicator. 

The status of the unequal indicator is not affected 
by testing it with a Branch If Indicator On instruc­
tion. Therefore, it may be tested several times 
after being set once, if desired. 

As an optional special feature, the 1401 can be 
equipped with the High-Low-Equal compare device, 
which considerably expands the power of the Com­
pare instruction. With this device installed, the 
comparison turns on a separate equal indicator if 
the two fields are equal and either the high or low 
indicator as well as the unequal indicator if they 
are not the same. "High" and "low" here refer to 
a scale in which the characters of the machine are 
ranked from smallest to largest. In this scale the 
"smallest" character is a blank, the letters of the 
alphabet run from A as smallest to Z as largest, and 
the digits follow the alphabet. The various special 
characters fit in at the positions shown in Appen­
dix 3. 

Mnemonic Op Code I-address 

H 
H xxx 

FUNCTION The execution of instructions is stopped and the stop-key light on the console is turned on. 
Pressing the start key causes the program to start at the next sequential instruction if no I-address is 
written and to start with the instruction specified by the I-address if one is written. 

WORD MARKS Not affected. 

TIMING T = 0.0115 (LI + l)ms. 



Branch If Word Mark and/or Zone 

FORMAT 

Mnemonic 

BWZ 

Op Code 

V 

I-address 

xxx 

BRANCHING 67 

B-address d-character 

xxx x 

FUNCTION The single character at the B-address is examined for a particular bit configuration, as 
specified by the d-character. If the bit configuration is present as specified, the program branches to the 
I-address for the next instruction: 

d-character Condition 

1 
2 
B 
K 
S 
3 
C 
L 
T 

WORD MARKS As explained. 

TIMING T = 0.0115 (LI + 2)ms. 

Compare 

FORMAT 

Mnemonic 

c 

Word mark 
No zone (No-A, No-B-bit) 
12-zone (AB-bits) 
ll-zone (B, No-A-bit) 
Zero-zone (A, No-B-bit) 
Either a word mark or no zone 
Either a word mark or 12-zone 
Either a word mark or 11-zone 
Either a word mark or zero-zone 

Op Code 

C 

A-address 

xxx 

B-address 

xxx 

FUNCTION The data in the B-field is compared with an equal number of characters in the A-field. 
The bit configuration of each character in the two fields is compared. The comparison turns on an indicator 
that can be tested by a subsequent Branch If Indicator On instruction. The indicator is reset by the next 
compare instruction. 

WORD MARKS The first word mark encountered stops the operation. If the A-field is longer than the 
B-field, extra A-field positions at the left of the B-field word mark are not compared. If the B-field is 
longer than the A-field, an unequal-compare results. 

TIMING T = 0.0115 (LI + 1 + LA + LB)ms. 
+ 

N ole. Both fields must have exactly the same bit configurations to be equal. For example, 000 compared 
-

with QOO results in an unequal comparison. 



68 IBM 1401 PROGRAMMING 

Housekeeping 

Add $ to 
accumulator 

No 

Yes 

Figure 5.2. Block diagram of the computer operations in produc­
ing the sales summarization by product in the example in Section 1.3. 

When it is necessary to determine which of two 
signed numerical fields is algebraically larger, it is 
best to subtract one from the other and use a 
Branch If Word Mark and/or Zone instruction to 
determine the sign of the difference. The Compare 
instruction cannot be used if the fields could have 
different signs because it will treat the sign bits as 
the zone bits of a letter. This is what we want in 
comparing two alphabetic fields, but not what we 
want for algebraic comparison. 

For a practical illustration of the use of the Com­
pare instruction, we may write the program to per­
form the first summarization in the sequential file 

processing example of Section 1.3, with one simplifi­
cation. It may be recalled that in the example we 
read the merged master and transaction deck, ob­
tained the unit price from the master and used it to 
extend the price of each sale and summarized the 
total sales for each product. This complete job is 
considered in Exercise 5. Here we shall simplify 
the task by assuming that the input deck consists 
only of the extended sales cards, that is, we are re­
quired to summarize the new sales deck. This deck 
contains a card for each sale, showing the product 
number, district, salesman, number of units sold, 
and the total price of the sale. The deck is in 
product number order. Weare required to produce 
a summary showing the total sales of each product 
for the month. 

A block diagram of the computer processing for 
this job is shown in Figure 5.2. We begin with what 
are called "housekeeping" operations, which are the 
preparatory instructions at the start of the program, 
to clear storage and set word marks. After reading 
the first card the part number is moved to the print 
area and the sales price is moved to a storage field 
where the total sales for the product are accumu­
lated. Such a field is often called an accumulator. 
Now another card is read and a comparison is used 
to determine whether it has the same part number. 
If so, its sales amount is added to the accumulator, 
and a check is made to determine whether this was 
the last card; if it was not, another card is read 
and the process repeated. 

When it is found that a card has a different part 
number from the preceding one, the situation is 
this: the information from the new card is in the 
read storage area, the part number of the preceding 
group is in the print area, and the sum of the sales 
amounts for the preceding group is in the SUM. 
It only remains to edit the total' and print the line. 

The two last card tests are necessary for the fol­
lowing reasons. It is convenient to use the same 
editing and printing steps for the last group of cards 
as applied to all others. This dictates a Branch to 
the same steps-after which the computer, of course, 
has no way of "knowing" that the steps were 
reached by a different path and that something dif­
ferent should be done on completing them than is 
normally done. This is the reason for the second 
test, after the output box. It is important to know 
that testing the last card indicator does not turn it 
off; this is not true of some of the other indicators. 

This problem presents an excellent example of a 
principle that the programmer must never forget: 
you have to plan for everything. What would hap-



pen if the last card of the deck were the only card 
for a product number? The comparison would show 
that the preceding card was the last of a group, the 
line for that group would be printed-and the last 
card test would stop the program without ever 
processing the last card! (This docs not happen if 
the last card is part of a group of cards having the 
same product number.) The simplest solution is to 
put a blank card at the end of the deck, which will 
take care of the special situation without causing 
any trouble in the normal case. 

(Although this is a simple method, it is not par­
ticularly desirable for the computer operator. Ex­
ercise 8 considers a better solution.) 

As a general rule, it is an excellent idea to check 

(AI OPERAND 

LINE COUNT LABEL OPERATION CHAR. ~ ADDRESS 

BRANCHING 69 

every block diagram to be sure that such special 
cases as the first card, the last card, and single-card 
groups are properly handled. And it is also an 
excellent idea to be sure that test cases are designed 
to examine these diagrams. It is most disconcerting 
to discover after four months of operation that a 
program does not properly handle some special con­
dition. 

"\Vith the clear picture of the logic of the program 
that is provided by a careful study of the block 
diagram, the program shown in Figure 5.3 presents 
no difficulties. The only instruction not previously 
illustrated is the Compare, which is used here to 
determine whether the part number in the read area 
is the same as the part number in the print area. 

Page No. L.c.LJ of 2 
I 2 

(BI OPERAND 

CHAR. ~ d COMMENTS 
ADDRESS 

3 5 6 7 8 13 14 16 17 I;J ADJ. 
27 28 I~I ADJ. 

38 39 40 55 

o I 0 START. C 51 0080 I 1 HrJu SE K.E:£P,I NG 1 1 

o 2 0 C 5' 0299 I I 

• I 

o 3 0 CS I 0332 I I 
1 1 

o 4 0 SW I RPN -'003 RD¢.LL I - 005 
o 5 0 R • 

o 6 0 M¢.VE !.. CIA RPN PPN. P R (j,O IJ C To NUMB.£R 
o 7 0 MC~W RD r/J,l L SUM. SALES AM.riUN.T. 
o S 0 READ R I 

o 9 0 C I RPN PPN SAM.E PR, N.(j, Q 
I o 0 8 I PRINT / P,R I NT IF. N'(/J, T. 
I 1 0 A I ROr/JlL SUM ACCUM. IF SAM.E. 
I 2 0 8 I PRINT A LAST. CARD Q 

• 
--'--.L 

N,7/f.T I 3 0 B I REAO BACK R.E.A 0 IF 
1 4 0 PRINT L CiA EDIT PO d,l L 
I 5 0 M.CIE SUM. PO¢.LL 
1 6 0 W I 

8 I HA L T. A LAST. C A RoD (J. I 7 0 

I 8 0 B I M.¢,~E 
HALT H I HALT. 1 9 0 I 

2 0 0 H • 

: I 
I ---L-L-

- I I I -J._ -L - _i j....,-.t=-'-- - -- -

Page No. ~ of 2 
• 2 

(AI OPERAND (al OPERAND 
; 

LINE COUNT LABEL OPERATION I;J CHAR. ~ I~I 
CHAR. ~ d COMMENTS 

ADDRESS 
ADJ. 

ADDRESS 
ADJ, 

3 5 6 7 8 13 14 16 17 27 28 38 39 40 55 

0 I 0 RPN OSI 0004 
0 2 0 RD.¢.LL DS' 0019 
o 3 0 PPN 051 0204-
0 4 0 POd,L L DS' 02/7. 
0 5 0 07 SUM. OC'W ~ 
0 6 009 EDIT DC'W ¥I. o. 
o 7 0 ENID STAR.T. 
o 8 0 : • I 

.L-_ - - I - -- _L.... 
_ .. 

Figure 5.3. SPS program to do the processing defined in the block diagram of Figure 5.2. 



70 IBM 1401 PROGRAMMING 

After the comparison, a Branch If Indicator On 
instruction with a d-character of slash is used to 
test the Unequal Compare indicator. If it is on, 
the program branches to the edit and print instruc­
tions. The Halt instruction is written with an I-ad­
dress that is the same as its label, so that if the start 
button is pressed after the program is completed 
the Halt will simply be repeated. This prevents 
an accidental attempt to restart the program when 
there is nothing more to do. After the Halt and 
Branch, there is another Halt. This is provided 
merely to make sure that there is a word mark in 
the position following the last instruction to be 
executed, since every instruction except an uncon­
ditional Branch must be succeeded by a word­
marked character. 

REVIEW QUESTIONS 

1. If a second Compare instruction were executed im­
mediately after another Compare, what net effect would 
the first Compare have on the Unequal Compare indi­
cator? 

2. Suppose the instruction BWZ 0600 0800 1 is lo­
cated in 800. What would it do? 

3. In the program of this section, what happens to 
the information from the first card of a new group while 
the line for the previous group is being printed? 

5.3 Case Study: Parts Explosion and 
Summary 

In a manufacturing operation parts explosion and 
summary is the process of getting the total parts 
requirements from a prescribed production schedule 
of finished goods. In the somewhat simplified ex­
ample to be considered in this case study we are 
given a production schedule deck containing one 
card for each model to be manufactured, each card 
showing the quantity of this product required. 
Each product has its own parts requirements, which 
are given in a parts requirements deck. This deck 
contains, for each product the company makes, as 
many parts cards as there are different parts in 
the model. Each parts card shows the product 
number, the part number and description, and the 
quantity of this part required for the model. The 
basic task is to find the total number of each part 
required by the entire production schedule. 

The following listing shows in semischematic style 
the information for two hypothetical models from 
the catalogue of a furniture manufacturer: 

Schedule card: model 5392 table; 40 required 
Part card: 5392 table requires 1 top, part 

278 
Part card: 5392 table requires 4 legs, part 

339 
Part card: 5392 table requires 2 braces, 

part 447 
Part card: 5392 table requires 12 screws, 

part 2285 
Schedule card: model 5673 table; 36 required 
Part card: 5673 table requires 1 top, part 

276 
Part card: 5673 table requires 4 legs, part 

339 
Part card: 5673 table requires 2 braces, 

part 447 
Part card: 5673 table requires 1 front plate, 

part 663 
Part card: 5673 table requires 18 screws, 

part 2285 

We see that the first model creates a need for 

40 tops, part 278 
160 legs, part 339 
80 braces, part 447 
480 screws, part 2285 

The second model creates the need for 

36 tops, part 276 
144 legs, part 339 
72 braces, part 447 
36 front plates, part 663 
648 screws, part 2285 

The explosion portion of the application produces 
this kind of information, in our example in the 
form of one card for each type of part required by 
each model. The summary portion gets the total 
requirements for each part. In this sample the 
summary would show 

36 tops, part 276 
40 tops, part 278 
304 legs, part 339 
152 braces, part 447 
36 front plates, part 663 
1128 screws, part 2285 

This is the general idea of the job. Now we may 
consider in a little more detail the implementation 
of the application in terms of the card and report 
forms to be used here. 

A flow chart of the processing is shown in Figure 



5.4. The first step in the job is to obtain the parts 
requirements of each model and multiply by the 
number of models to be built. In order to do this, 
the production schedule is punched into cards hav­
ing the following format: 

Cols. 1 to 5 
Cols. 6 to 9 

Model number 
Number of this model to be built 

The cards are next sorted into model number 
order, for collating with the master parts require­
ments file. This file, which is in model number 
order, consists of cards having the following format: 

Cols. 1 to 5 
Cols. 6 to 10 
Cols. 11 to 30 
Cols. 31 to 33 

Model number 
Part number 
Part description 
Number of this part required 
for one of this model 

The deck will contain, for each model, as many 
cards as there are parts in the model. 

Not every model in the catalogue will be built in 
anyone production period, ordinarily, so that when 
the parts requirements master file is collated with 
the schedule cards there will be unmatched masters. 
These could be left in the deck, but it will simplify 
our block diagramming and coding work here if we 
assume that they are selected out of the deck and 
returned to the file. In fact, it might work out in 
practice that the unmatched masters would make a 
much larger deck than the matched and that it 
would be entirely reasonable to remove the un­
needed ones to avoid wasting the computer time 
required to read them. 

The deck that now goes to the computer consists 
of sets of what may be called "packets," each con­
taining a schedule card giving the number of a 
certain model to be built, followed by parts require­
ments qards showing the parts required to build one 
of the model and how many of each. The task of 
the computer run is to "explode" the parts needed 
for each model, that is, to multiply the number of 
each model to be built, by the quantity of each of 
the various parts used to built it. This will produce 
another deck of cards, each card giving the quantity 
of some part needed to build the specified number 
of units of one model. 

After these cards are sorted on part number, a 
second computer run can easily summarize the num­
ber of each part needed by the various models in 
which it is used. 

Production 
schedule 

1401 
Summarize parts 

requirements 

BRANCHING 71 

Parts requirement 
summary 

Figure 5.4. Flow chart of a procedure for parts explosion and 

summary. 

These cards have the following format: 

Cols. 1 to 5 
Cols. 6 to 10 
Cols. 11 to 30 
Cols. 31 to 35 

Model number 
Part number 
Part description 
Quantity of this part 
required to build the 
specified number of 
this model 

The format of the parts requirement summary is 
the following: 

Positions 1 to 5 
Positions 10 to 16 

Part number 
Quantity required 



72 IBM 1401 PROGRAMMING 

No 

Housekeeping 

Select 
stacker 

Store model #, 
and quantity 

Get total 
part 

requirements 

No 

Figure 5.5. Block diagram of the explosion part of the procedure 
charted in Figure 5.4. 

A block diagram of the computer processing to 
explode the parts requirements of each model in 
the production schedule is shown in Figure 5.5, and 
the symbolic program in Figure 5.6. The house­
keeping is much the same as before, except that now 
we clear the punch area instead of the print area. 

The setting of word marks is done in absolute as 
a concession to the necessity of taking advantage 
of the similarity of card formats in order to avoid 
setting word marks separately for each of the two 
different types of cards that must be read. 

The first card in the deck should be a schedule 
card. After reading it, we use stacker selection to 
put this card in the 1 pocket instead of in the 
normal read pocket in which the parts requirement 
cards are stacked. Stacker selection requires the 
Select Stacker instruction. The actual operation 
code is K and the mnemonic SSe The instruction 
needs only a d-character besides the operation code 
to determine which of the stackers is to be selected. 

N ext, the model number is placed in the punch 
area from which it will be punched, and in which 
it may be used to compare with the model number 
from succeeding cards to determine when a new 
model is to be processed. The model quantity is 
next moved to a working storage location named 
QTY, for later use in multiplying by the number 
of each part required. 

Now another card is read, which should be a parts 
requirement card this time. (There obviously must 
be at least one part to each model.) As later cards 
are read, however, we shall eventually come to the 
model requirement card for the next model. There­
fore, the first thing to do now is to determine 
whether the model number on this card is the same 
as that on the preceding card. If it is the same, we 
set up the information for the total parts require­
ment card, multiply the number of models by the 
quantity of parts required for one model, and punch 
the card. If the comparison showed a different 
model number, then the preceding model must have 
been . completely processed, this must be a new 
schedule card, and we go back to select the stacker 
and proceed with the processing of the new model. 

After punching the card, a last-card test is used 
to determine whether the end of the deck has been 
reached. If it has, we halt; if not, we return to 
read another card. 

The summarization run is not hard to write and 
is left as an exercise. 

REVIEW QUESTIONS 

1. It is rather essential to the procedure of the block 
diagram that there not be two schedule cards for the 
same model. What would happen if there were? Would 
it make any difference whether this happened at the 
front of the deck instead of the middle or the end? 



2. What would happen if there were a schedule card 
for which there were no corresponding parts requirements 
cards? Would it make any difference where in the deck 
this happened? 

3. This procedure contains no error checking of any 
kind. Can you think of a way to use a total count of 
all parts in all models to provide some measure of check­
ing of card handling? 

EXERCISES 

*1. Using the High-Low-Equal compare feature, move 
whichever of the two fields DATAl and DATA2 is larger 
to location BIG. (Do not write a complete program, 
that is, assume word marks are set and that the symbols 

(A10PERANO 

LINE COUNT LABEL OPERATION CHAR. ~ ADDRESS 

BRANCHING 73 

are defined elsewhere.) Draw a block diagram and write 
a program segment. 

2. Move whichever of the three fields DATAl, 
DATA2, and DATA3 is largest, to location BIG. (As­
sume that all the words are different.) Draw a block 
diagram and write a program segment with the same 
assumptions as in Exercise 1. Hint. Place the larger 
of DATAl and DATA2 in BIG, then compare this num­
ber with DATA3, and replace it with DATA3 if DATA3 
is larger. 

*3. Read a card. If column 23 contains an 11 zone 
punch-regardless of what else the column contains­
punch another card containing in columns 1 to 40 the 
information in columns 41 to 80 of this card. If column 
23 does not have an 11 zone punch, print in positions 

Page No.1 a / I of __ 2 __ 
2 

(81 OPERAND 

CHAR. g d COMMENTS 
ADDRESS 

3 5 6 7 8 13 14 16 17 I~J ADJ. 
27 28 I~I ADJ. 

38 39 40 ~~ 

0 , 0 E.XPSUM C 51 008,0 , H 0 US£ K.E.E PI M6 , 
0 2 0 CS' 0/80 
o 3 0 SWI 000/ 0006 
0 4 0 SWI 001 I 0031 
0 ~ 0 R 

, 
READ SCH£D CA RD 

0 6 0 SCHCD 551 I S£L£:C.~ STACK.ER 
o 7 0 LC'A RI PR ¢DN,¢: P R ¢. a U.C T N I1A(f]i~L~_ 
o 8 0 MCIW R2 IQ,~ ~ QUANTIT.Y. 6CH£.D. 

PARTeD R, I 
o 9 0 

~~ c 1 RI , PR¢.O N.¢: , SA ME. PR t),t) Nt). L4't 
, , 0 8 I SCHCD 

, 
/ A/,(p, -NEW sell CARO , 

p~ L CIA R3 PA R TN.¢: 
, YES-PART CAR.D. , 

~_o L C:A R4, DE5C 
, SET UP PIJNCH A RE A , 

~ ----'--
MCjw QTY MULT ,.-J004 GET T,¢,T,A L . 

, ~ 0 Ml R$ 1 MULT 
, 

(P,li A N. r: I. T Y , 1 

~ MC'W MoULT 
, 

T. ¢. T,{}, To Y: , 

P 
, , , 

P.U N C H £. X .e~T. __ R€.R. _I-Ll--.:..._O. _..L...-.. ----'--'----'-
, 1 

8 : H.ALT 1 , 1 A L A 6 T. C A-"--Rcj2"-Lfl-"---1 ___ ~-L-~_.L~ _1.- 1 , , 
8 : PA RTCD: 

, 1 
N,r) - R.E.A a !{gL~E_l~fl.l._ ~.L~ -~. 1 1 

2 0 0 HALT H I HA L T 1 1 1 , 1 
, , , , , 

~'- - ---'- _. c-L-l.-.L 1 1 , 
_~ . ..l.._-L __ ...L._...1 __ 

......... ~ .... .1 , -- - --
Page No.1 ~1 ~ I of _2 __ 

(A1 OPERAND (B1 OPERAND 

LINE COUNT LABEL OPERATION I;J CHAR. g 
I~I CHAR. ~ d COMMENTS 

ADDRESS ADDRESS 
3 5 6 7 8 13 14 16 11 

ADJ. 
21 28 

ADJ. 
38 39 40 ~~ 

0 1 0 RI DSI 0005 
, , 
1 1 

0 2 0 R2 OS' 0009 
, 1 
1 1 

0 3 0 R3 DSI 0010 1 I 
1 , 

0 4 0 R4 DS' 0030 
, : 1 

0 ~ 0 R5 OS' 00.3 .3 
, 1 
1 1 

0 6 0 RR¢,D N¢ OSI o I OS 1 1 , 1 

0 7 0 PARTN¢ OSI o I 10 1 , 
1 1 

0 8 0 DESC 051 0130 
, 1 
1 1 

0 9 o OS T¢,TtPTY DC'W 01.35 1 , 
1 1 

I o 0 04- &TYt OC:W~ 1 1 , , 
~~ f!A MLl£_'=-2L--L-~iCIW oW : , 

1 

E.X, p,S UM: 1 
1 2 0 

--'--- ---'---'- £N1D , , 1 , 
1 3 0 

--'---1. 1 , -- --
Figure 5.6. Program of the computer operations diagrammed in Figure 5.5. 



74 IBM 1401 PROGRAMMING 

1 to 40 the information in columns 41 to 80. Write a 
program segment, in absolute if desired. 

4. In the block diagram and program of Section 5.2 
add the steps necessary to produce a sales total for the 
month for all products. 

5. Draw a block diagram and write a complete pro­
gram to do the extension and first summarization of the 
example in Section 1.3. 

The format of the master cards is 

Cols. 1 to 4 
Cols. 5 to 9 
Col. 10 

Product number 
Unit price 
11 zone 

The format of the sales cards is 

Cols. 1 to 4 
Cols. 5 to 8 
Cols. 9 to 11 
Cols. 12 to 13 

Product number 
Units sold 
Salesman 
District 

See Exercise 4 of Chapter 2 for a description of the 
processing and some hints on how to proceed. 

*6. Suppose that cost infonnation is included in the 
parts cards in the case study of Section 5.3 as follows. 
Columns 34 to 38 contain the total cost of the number 
of parts required to build one of this model. Modify the 
block diagram and program as necessary to provide a 
parts cost total for each model scheduled for production. 
This should be printed during the explosion run in the 
following format: 

Position 1 to 5 
Position 10 to 13 
Position 18 to 25 

Product number 
N umber to be built 
Total cost of all parts required 
to build this many of this model. 
Print with decimal point. 

7. After the exploded parts requirements cards have 
been sorted into part number order they must be sum­
marized by part number. Draw a block diagram and 
write a complete program. 

8. Extend the block diagram of Figure 5.2 to handle 
the special case of a one-card "group" at the end of the 
deck without the requirement of a blank card at the end. 



6. ADDRESS MODIFICATION AND 
LOOPS 

6.1 Computations on Addresses 

We have seen in preceding sections that 
instructions are stored within a computer in 
much the same way data is stored. An in­
struction is made up of the same characters 
that are available for storing data, the in­
struction characters are placed in the same 
storage as data, and in the 1401 instructions 
are required to have word marks in their 
high-order positions just as most data words 
have. As long as an instruction is simply 
being stored, it is literally indistinguishable 
from data. It is only when an instruction 
is to be executed that any differences arise. 
The fact that in the 1401 instructions are 
brought from storage in a left-to-right fash­
ion, whereas data is accessed from a nght­
to-left, is really only a matter of design con­
venience and is not fundamental. 

The one thing that actually distinguishes 
an instruction from data is the time at which 
it is brought from storage, that is, during 
the instruction phase or during the execu­
tion phase. If a word is read out of storage 
during the instruction phase, it goes to the 
control registers and is treated as an instruc­
tion. If a word is read out of storage during 
the execution phase, it goes wherever the 
operation code dictates that it should go to 
execute the processing prescribed by the 
instruction. This distinction between in­
struction and data is the same for all stored­
program computers. It does not depend on 
the fact that the 1401 has a variable word 

length, that word marks are involved, or 
that most instructions have two addresses 
or on any of the other features of the 1401 
that are not typical of all computers. 

What significance has all of this to us as 
programmers? In a nutshell, the answer is 
that we are able to operate on instructions 
in storage just as though they were data. If 
one instruction says to add a constant to the 
address of another instruction, there is no 
confusion in the machine in doing so. The 
first instruction, which calls for the addition, 
is accessed during the instruction phase and 
goes to the control registers. The address 
part of the second instruction, on which 
arithmetic is being performed, is accessed 
during the execution phase of the first in­
struction. Similarly, if a Move instruction 
is used to transfer an instruction from one 
place in storage to another, this is perfectly 
legitimate. It is also permissible to have one 
instruction change the operation code of an­
other instruction. 

The facility for carrying out processing 
operations on instructions is one of the most 
important aspects of a stored-program com­
puter. In short, it makes it possible to set 
up a program to modify itself, according to 
the results of its own data procesing opera­
tions. This ability, combined with the abil­
ity to repeat a section of a program that is 
provided by the various branching instruc­
tions, is by all odds the most important sin­
gle feature of the stored program concept. 

For a first example of the application of 
75 



76 IBM 1401 PROGRAMMING 

TABLE 6.1 

Merchandise 
Class 

1 
2 
3 
4 
5 
6 

Printing 
Position 

1-10 
11-20 
21-30 
31-40 
41-50 
51-60 

this concept, consider the following sales sum­
marization problem. A previous computer run 
has produced a deck of cards containing (among 
other things) a sales amount and a code num­
ber that gives the class of merchandise repre­
sented by the sale. There are six classes of mer­
chandise, represented by the codes 1 through 6. The 
merchandise code is punched in column 43 and the 
amount of the sale in dollars and cents is punched 
in columns 17 to 22. In this highly simplified ex­
ample we are required only to print in a single line 
the total sales for each merchandise class. The 
required printing positions are shown in Table 6.1. 

This example presents only one problem: how to 
determine to which of the six total accumulators 
the sales amount on each card should be added. 
The reading of the cards, the last-card test, and 
the printing of the total line will cause us no 
difficulty. The choice of the proper accumulator 
could be handled by a series of comparisons and 
branches, or somewhat more conveniently by the 
use of an instruction that we have not considered, 
the Branch If Character Equal instruction. How­
ever, by either of these methods, the testing and 
branching would run to 15 or 20 instructions, which 
makes us wonder whether there might not be some 
simpler way to accomplish the same result. 

Indeed there is a simpler way. Consider what 
we would get if we were to multiply the merchan­
dise code by 10 and add the product to 200 (see 
Table 6.2). 

Thus it appears that, if we carry out this simple 
computation on the merchandise code and use the 
result as the address of an instruction, then in each 
case we will have the address of the proper field 
in the print area. Since the entire computation 
produces only one line of output, there is no reason 
not to use the print area itself for the six accumu­
lators. Therefore, once the address of the proper 

position in the print storage area has been com­
puted, it can be placed in the address part of an 
Add instruction and the addition performed in 
whichever accumulator is specified by the computed 
address. 

Since we are concerned in this example with other 
things, the program in Figure 6.1 is shown without 
the initial housekeeping operations of clearing stor­
age and setting word marks. After reading a card, 
we proceed immediately to compute the address 
of the accumulator to which the sales amount from 
this card should be added. The address of this 
accumulator will be developed in a three-position 
field which has been given the symbolic address 
vVKSTOR, for working storage. We begin by mov­
ing the constant 200 into this working storage. 
Then the merchandise code is added to this field 
with character adjustment of minus one, which has 
the effect of adding the code into the tens position 
of the field. Therefore, the sum in WKSTOR will 
be 200 plus ten times the merchandise code, which 
as we saw is the address of the proper accumulator. 
This address is next moved into the B-operand ad­
dress part of the Add instruction, which follows 
immediately. This is done with the MCW instruc­
tion in which the B-operand address is COMP AD 
with character adjustment of plus six. Looking at 
the labels of this program, we see that COMP AD 
is the symbolic location of the Add instruction. Re­
membering that the location of an instruction refers 
to the location of the operation code, we see that 
to obtain the address of the rightmost character of 
the B-operand does require character adjustment 
of plus six. 

The Add instruction which will form the sum 
is shown with a B-address of 0000. This is to re­
mind us that this address is computed by the pro­
gram itself. The situation is this. When the ob­
ject program is loaded into storage, the B-address 

TABLE 6.2 

Merchandise 
Code 

1 
2 
3 
4 
5 
6 

10 X Code 
+200 

210 
220 
230 
240 
250 
260 



of this instruction is 0000. However, by the time 
the instruction is executed the program itself will 
have placed the address of one of the six accumu­
lators in this part of the instruction. 

With the sales amount added to the proper ac­
cumulator, we make a last-card test. If this was 
the last card, we branch to print the total and halt; 
if it was not the last card, we branch back to read 
another card and repeat the entire process. 

It is important to realize just what this example 
shows: that computations on addresses are possible 
and useful. This particular example, however, is 
unrealistic for a reason that is important in itself. 
vVhat would happen if a merchandise code were 
mispunched and entered the computer as 7 or K? 
The answer is simply that the program as written 
would carry out the address computation on the 
bad code and then add the sales amount to whatever 
location it computed. The result would be at least 
wrong-and perhaps disastrous: the program might 
well be destroyed by the addition. 

The point of all this is that one should think 
twice before putting so much faith in data. In this 
example we could make a check before the address 
computation to determine that the code really is 
a digit between one and six. Different ways to 
guarantee the correctness of a computed address 
may be found in other situations. 

In any case, the example illustrates well the 
principle of address computation and perhaps gives 
a hint of the usefulness of the technique. 

(Al OPERAND 

LINE COUNT LABEL OPERATION CHAR. ~ ADDRESS 

ADDRESS MODIFICATION AND LOOPS 77 

REVIEW QUESTIONS 

1. How does a computer distinguish between instruc­
tions and data? 

2. "\Vould the concept of storing instructions like data 
and the consequent ability to perform arithmetic on in­
structions be significantly different in a machine in which 
instructions have three addresses? 

3. "\Vhy was it necessary to develop the address of 
the correct accumulator in a working storage area rather 
than directly in the address part of the Add instruction? 
Hint. Consider what would happen when the second 
and subsequent cards were read, and what the word 
mark problems might be. 

4. This particular program is completely dependent 
on the fact that each of the printing fields is exactly 10 
columns long. Still using the same basic address compu­
tation technique, how could you revise the program if 
each of the printing fields were 15 columns long? 

6.2 Program Switches 

For another example of the concept of a program 
modifying itself, consider the "storage" of deci­
sions, by the use of program switches. It not in­
frequently happens that a decision made at one 
point in the program has a bearing at one or more 
later points. Sometimes it is possible simply to 
repeat the Branch instruction that made the de­
cision in the first place. In other cases, however, 
the information on which the decision was originally 
made is no longer available-or it may happen that 

Page No. W of ---

(Bl OPERAND 

CHAR. g d COMMENTS 
.ADDRESS I~I 13~1 3 5 6 7 8 13 14 16 17 

ADJ. 
27 28 

AOJ. 
38 39 40 55 

0 I 0 R.EA D R I I I I 
I I I 

0 2 0 MC'W C200 : w. K 5 T, (j,R: I ADDRESS-I 

o 3 0 A I C (d,D E I ~K S 7,(/),R:-:0 0/ C,r/J,M, p. UTA T.I.rP N I 

0 4 0 MC'W WK S T{J;.R: C rJM. PA.O'+'O 06 5 T,r) R E. ADDRESS 
0 5 0 C(dMPADA I SALE I 0000 C,(J,MPU T.ED 8-ADDRS I 

0 6 0 8 I PRINT I 
ALAS~ CARD TEST I 

a 7 0 B I READ I Nr/JI I 

a 8 a PRIN.T W I I PRINT, T10T,A LS, I 

a 9 0 H I ¥ :- 003 
I a a H I I 

I 

I I 003 ~OO DCIW 1f I 1200 I 

I 2 a 03 WKST'¢IR DC'W* 
I I 
I I 

I 3 a C,¢,OE OS: 0043 I I 
I I 

I 4 0 SALE DS' 0022 I I I 

f--. I I I 

_'.--L--~_-L~ ENID READ I I I 
I I I 

_~ .~_~6_ .. __ ~ 
1 I I I 

--'-- I I I - --.I- I I -- ....... -
Figure 6.1. Program illustrating address computation. 



78 IBM 1401 PROGRAMMING 

the decision involves a number of instructions, mak­
ing it wasteful to repeat them when the result of 
the decision is needed later. 

When such situations arise, it is desirable to be 
able to store the result of the decision. This can 
be done in many ways. One possibility is to store 
either a zero or a one in some location, depending 
on the outcome of the test. Then, when it is later 
necessary to know what the result of the test was, 
this storage location can be checked to see whether 
it contains a zero or a one. The most common 
technique, however, at least for storing the results 
of two-way decisions, is to change the operation 
code of instructions. 

This instruction modification is most frequently 
done by using the unconditional Branch and the 
No Operation instructions. No Operation is an 
instruction that causes no action to take place any­
where in the computer. Stated otherwise, there is 
no execution phase on this instruction. It is pro­
vided partly for such situations as we are describ­
ing and partly to make it possible to eliminate the 
effect of unwanted instructions when it is not feas­
ible to reassemble. It has many other valuable 
uses. The operation code is N and the instruction 
may have any of the other parts of the instruction; 
any other parts besides the operation code will, of 
course, have no effect. The mnemonic operation 
code is NOP. 

To describe the operation of program switches 
a little more concretely, consider the following situ­
ation. A comparison is to be made early in a pro­
gram. It the comparison shows equal, then at three 
subsequent points in the program it is necessary 
to branch to special routines to handle this case. 
If the comparison shows unequal, then at each of 
those three points the program should continue in 
sequence. The technique is to write the three 
Branch instructions at the points at which the 
program should transfer out to the special routines, 
as though the branch would always occur. When 
the test is made, one of two short routines is exe­
cuted. If the test shows unequal, then the opera­
tion codes of the three Branch instructions are 
changed to N. If the test shows equal, the three 
operations codes are set to B. When the three 
instructions are subsequently executed, they will 
either cause the Branches or allow the program to 
continue in sequence, depending on the result of 
the test. 

It actually is necessary to go to the trouble of 

setting the operation code of the three switches for 
each outcome of the test. It might be thought 
that if the instructions were originally written as 
Branches, then they could simply be left alone 
if the initial test showed that the branch should 
be executed and changed to N's if the program 
should continue in sequence. This would indeed 
work correctly the first time through the program 
and possibly for a few later executions. However, 
as soon as the operation codes are once changed 
to N, then they need to be reset to B's if the Branch 
should be executed. 

Naturally there are many other programming 
techniques that can be used to store the result of 
a decision. One that comes to mind immediately 
is the possibility of changing the address part of 
a Branch instruction. The choice of the method 
to be used in setting up a program switch depends 
on such factors as the number of different possible 
outcomes the decision has, how many places the 
switch must operate, and how much trouble it is 
to repeat all or part of the original decision. In 
other computers the choice will also depend on the 
programming characteristics of the machine. 

In all cases, however, the general principle is 
simply that a decision made at one point in the 
program is being used to control the subsequent 
action of the same program on one or more later 
occasions. This further example of the modification 
of a program by itself finds fairly frequent appli­
cation in many programs. We shall see a few ex­
amples of the technique in later sections. 

REVIEW QUESTIONS 

1. Describe how a program switch could be set up to 
use modification of the address of a Branch instruction. 

2. Does the concept of a program switch depend on 
using the result of a decision at more than one subsequent 
point in the program? 

6.3 Program Loops 

It must be readily apparent that a program in­
volving no repeated executions of instructions 
would not be practical. If a program were able 
to proceed only sequentially through its instruc­
tions and on completion had to be replaced by 
another program, then it is clear that the stored 
program computers would be of little value. Most 



of the time would be spent in loading instructions. 
Fortunately, however, there is no such restric­

tion on the organization of programs, and a whole 
body of technique has been built up around the 
methods for repeated execution of program seg­
ments. This technique is known as looping. Vve 
have, in fact, already seen a number of elementary 
examples of loops. The illustrative program in 
Section 5.1 is a loop in the following sense: after 
some preliminary housekeeping operations, we read 
a card and perform certain computations on the 
data read from it. Then we test the last card in­
dicator to determine whether all of the cards have 
been read. If not, we return to the instruction for 
reading a card and repeat the entire program except 
for the initial housekeeping operations. 

vVe have here almost all of the normal parts of 
a loop. There is an initializing section, which gets 
the loop started properly and is only executed once. 
There is a computation section which does the ac­
tual work of the program-in this case, reading a 
card and performing the calculations. There is a 
testing section which determines whether the work 
of the loop is completed. Most loops also contain 
a modification section which changes some of the 
instructions in the computation section of the loop 
or changes the data on which the computation sec­
tion operates. In a certain sense, even the simple 
program in Section 5.1 has a modification section 
if we regard the reading of a new data card as a 
modification of the data being operated on. 

This example is a loop that consists of an en­
tire program, which is a rather broad application 
of concept. We more commonly find loops that are 
only small segments of a total program. Fre­
quently, one loop has within it one or more addi­
tional loops. The sales summarization program of 
Section 1.3 can be viewed in this manner. The 
innermost loop is the one that obtains the sales 
total for each salesman. This loop is "inside" the 
loop that computes the totals for each district, 
which, in turn, is "inside" the total program loop 
that reads the entire deck of sales cards. In each 
case there is an initialization section that consists 
of the housekeeping operations for the total pro­
gram loop and of the special handling of the sales 
amount on the first card of each group for the other 
two loops. In each case there is a computation 
section; this must be applied broadly to the total 
program loop, since it consists of all operations 

ADDRESS MODIFICATION AND LOOPS 79 

contained in the other two loops. In the two sum­
marization loops the computation consists of the 
summarization and of the processing that is done 
when it is found that the last card of a group has 
been read. In each case there is testing, in one 
to detect the last card (although this test was not 
written in the program earlier) and in the other 
two to determine when the first card of a new 
group has been read. 

The loop concept provides the best example of 
the unique power of a stored program digital com­
puter. It is probably the most important single 
topic in the study of programming. vVe shall see 
immediately below that one of the most powerful 
types of loops involves the repetitive modification 
of the instructions within the loop itself, most com­
monly the addresses. 

REVIEW QUESTIONS 

1. Name the four parts of a loop and give examples 
of each. 

2. Must the four parts of a loop always be executed 
in the order in which they are named in the text? 

3. If a loop is used only once in a program, that is, 
never started again with new data, is it logically necessary 
to initialize? 

6.4 Address Modification Loops 

In this type of loop we have, as before, the four 
parts of initialization, computation, testing, and 
modification, although not necessarily always in 
that order. The modification now consists of 
changing one or more addresses within the com­
putation section of the loop. The testing most 
commonly involves determining whether the com­
putation section has yet been carried out a spe­
cified number of times. 

For an example of this type of loop consider the 
following inventory usage application. A deck of 
cards contains one card for each part in the in­
ventory of a certain manufacturing company. Each 
card shows the part number and the usage for each 
of the 12 months of the calendar year. The task 
is to produce a report with one line for each part, 
showing the average monthly usage of the part and 
the number of the month in which maximum usage 
occurred. 

The card format is as follows: 



80 IBM 1401 PROGRAMMING 

Columns Field 

1-9 Part number 
9-13 January usage 

14-18 February 
19-23 March 
24-28 April 
29-33 May 
34-38 June 
39-43 July 
44-48 August 
49-53 September 
54-58 October 
59-63 November 
64-68 December 

The format of the report is as follows: 

Printing 
Positions 

1-8 
12-16 
20-21 

Field 

Part number 
Average monthly usage 
N umber of month of 

maximum usage 

This program may be thought of as consisting of 
two parts: dividing the sum of the monthly usages 
by 12 to get the average and determining which 
of the months has the heaviest usage. In the final 
version of the program these two parts are com­
bined in one loop. However, to get a clear picture 
of the workings of an address modification loop, 
we first write a program to get the average only 
and then add the instructions for finding the heavi­
est usage. 

Zero and Add 

FORMAT 

Mnemonic 

ZA 

Op Code 
+ 
o 

After reading a card the object of the summing 
loop is to add to an accumulator the usage for each 
of the 12 months. This, of course, could be done 
with a Move and 11 Adds. However, we shall see 
that it can be done with fewer than 12 instructions. 
We begin by setting the accumulator to zeros in 
order to remove the sum developed there from the 
previous card. We also set to zero a two-position 
counter that is used to determine when the last 
monthly usage has been added to the accumulator. 
The 12 monthly usages are picked up from the read 
area by a single Add instruction, the address of 
which is modified each time through the loop. 
Since, after reading one card, this address will be 
incorrect for starting the accumulation of the usages 
from the next card, we initialize this address by 
setting it to 13, the address of the first data field. 

Each time around the loop another data field is 
added to the accumulator, the A-address of the 
Add instruction is increased by 5, and 1 is added 
to the counter. A comparison is made each time 
to see whether this counter has reached 12. If it 
has, then all 12 monthly usages have been added 
into the total and we are finished; if it has not, then 
the loop is repeated. When the total usage for the 
year has been developed, we divide by 12, print 
the line for this inventory item, make a last-card 
test and, if cards remain, return to the Read in­
struction. 

A block diagram of this procedure appears in 
Figure 6.2 and a symbolic program in Figure 6.3. 
Once again, the program is shown without the pre­
liminary housekeeping operations of clearing stor­
age and setting word marks. In the program a 
new instruction is used to place zeros in the accu-

A-address B-address 

xxx xxx 

FUNCTION The entire B-field is set to zeros; then the data from the A-field is moved to the B-field with 
zone bits stripped from all but the units position. If A is shorter than B, zeros are placed in the high-order 
positions of B. 

WORD MARKS The B-field must have a word mark; the A-field must have a word mark only if it is 
shorter than the B-field. 

TIMING T = 0.0115 (LI + 1 + LA + LB)ms. 



mulator and count fields. The Zero and Add in­
struction is just like an Add except that the B-field 
is cleared to zeros before the addition takes place. 
This instruction is therefore analogous to a Move 
or Load instruction, with the significant difference 
that in a Zero Add the zone bits of all but the low­
order character are removed during the transmis­
sion. This feature itself is often of value. In our 
case, the advantage of a Zero Add over a Move is 
that we can set up a field consisting of only a single 
zero and clear the entire B-field. What the instruc­
tion actually does, in our case, is to clear the entire 
B-field to zero and then add the one-character con­
stant of zero that we specify with the A-address. 

The desired initial address of the Add instruction 
that picks up the monthly usages is transferred with 
an MeW instruction. 

The variable-address Add instruction, which has 
the symbolic label of ADDINS, is shown with an 
A-address of 0000; this address is computed by the 
program and will have some value other than 0000 
by the time it is first executed. After the first 
monthly usage is added into the accumulator, using 
character adjustment to add into the high-order 
part, we add a 1 to the counter and a 5 to the 
variable address of the Add instruction. This last 
is done with character adjustment to add the 5 into 
the units position of the A-address. It might ap­
pear that there is a word-mark problem here, but 
it happens that the attempt to propagate carries 
when the 5 is added to the address will not affect 
the operation code of the Add instruction. If it 
were desired to be double safe on this, a word mark 
could be set in the high-order position of the A­
address before the addition of the 5 and then cleared 
afterwards. 

Next the count is compared with 12 and a Branch 
If Indicator On instruction tests for equality. If 
the indicator shows that the two are unequal, we 
branch back to the Add instruction and pick up 
another monthly usage and continue the loop. If 
the unequal indicator is off, then the branch does 
not occur and we proceed to find the average. This 
could be done with the Divide instruction, an op­
tional feature on the 1401, or by a programmed 
division routine. Here, however, we have chosen 
to multiply by Yt2 rather than divide by 12. This 
is done simply to save the time that would be re­
quired to describe division in the 1401, since we 
shall have no further occasion to use it. 

The constant Yt2, which is taken as equal to 

ADDRESS MODIFICATION AND LOOPS 81 

Initialize 
accumulator, 
counter, Add 

address 

Add a month's 
usage to 

accumulator 

Add 1 to 
counter. Add 5 
to Add address 

Multiply by 1/12 
to get average. 

Put in print area 

Move part 
number to 
print area 

No 

Figure 6.2. Block diagram of a procedure to compute the average 
of 12 numbers on a card. 



82 IBM 1401 PROGRAMMING 

.083333, has six places to the right of the decimal 
point. Therefore, after the multiplication the aver­
age can be rounded to the nearest unit by adding 
a 5 to the fifth digit to the left of the units position. 
The rounded monthly usage is then moved with 
zero suppression to the printing position, the part 
number is also moved with zero suppression, the 
line is printed, and a last-card test is made. 

It is worth emphasizing what this program illus­
trates. We have here a fairly representative ex­
ample of an address modification loop. There is 
an initializing section, where we put zeros in loca­
tions that could have left-over data from the pre­
ceding execution of the complete loop and where 
we start an address at its correct initial value. 
There is a computation section, consisting in this 
loop of just the one variable-address Add instruc-

(AI OPERAND 

LINE COUNT 
ADDRESS 1+ I CHAR. g 

5 6 7 8 '3 '4 '6 '7 ;31 ADJ. 27 28 

LABEL OPERATION 

tion. The modification section consists of the addi­
tion of 1 to the counter and of 5 to the address of 
the Add instruction. The testing involves deter­
mining whether the counter has reached 12 and re­
turning to another execution of the loop if it has 
not. The instructions that follow the test are not 
part of this loop. 

Note that the complete loop takes eight instruc­
tions, including the initialization. Without a loop, 
the same summation would take 12 instructions: 
one MeW and 11 Adds. However, the loop version 
requires the execution of 63 instructions: three for 
initialization and 12 times around the five instruc­
tions in the repeated portion of the loop. Thus we 
see that a loop saves space at the expense of time. 
This is a completely general statement. 

This example is quite important for what it shows 

Page No. L.c1.J of _2 __ 
, 2 

(BI OPERAND 

ADDRESS 
1 

+ I CHAR. 

3~1 ADJ. 

g d COMMENTS 

55 38 39 40 

ro~,~o~-+S~T~A~R~T~rR~~I-r~~LT~_'~' ~:-L~+-~~-L~~~: ~:~-L~_+-~-L~~~~~~~~-L-L_~ 
Z A' Z. ER ¢ :: ACe UM. : : I NIT I A~U-----'----'---"---'---'--i o 2 0 

o 3 0 ZAI :£ £R,'(j, :: C ¢,IJNT : : T¢'T,A,L, ,~,U,N,T,E,R, 
o 4 0 MC'W ~N T.A DO: : ADO I NS:+:O O~ I III I, T., ,A D,ggE,S,S, , , 
o ~ 0 AOOI NS A I 0000 :: A CCUM :-:007 VA RIABL,E, A,O,D,RESS 
rO~6~0~-+~~~~-rA~~I~~~N~E~~~~: ~:-L~+-~c~,~¢U~N~~~~: ~:~-L4-+-~M~~J,F'~_~~~lN,~~~~ 
r0:....L.:...7--,-,,--0 ~-+~~L-l~-rA'-'--1--~'---¥-F~I,LV~E"-'----~~: -.!.:-L~+_-f-!A~D~D.L"I"'--L!..'N.~S~: +~~: 0J.~a. ____ G.L ___ J.~AJ?~,tlJU2J3-'-!.L...1 __ -'---'-__ 

o S 0 C I C, ¢, U NT: : ToW, L V E : : F ~]J I, S, H, ED, tt, , , , , , 
1-0-,--9--,--0 t--'-+--"--'----'----'---'--t"B=-'--'-�-+'-A--'-1...=D-'-'O=:....=I~N__'_'S=..!_: ....:.:-L-'-----+-+--L-..L-"--'-------'-----_-'--: -,:----,--, -------'--" -f-~ !!1 __ .J........L...' " "'" ---"---1-

1-,-'--o--'--0t--'-+--"--'----'----'---'--+M-'----~:-bC=-I-'---~~-'----: ~:-L-"--+-~A~C~CLU~M~-'--: -':----'--_~~_ yE'~~~~L~~~~~ 
1-,'--'--'-'~o~-+~-'--L-l~-rA'O--'--__LI---¥-F~I__'__"_V'__'E"_'__~~: -.!.:~-'-+_-f-A-'--.!.-"C~C,U,M, L::::-:O,~§ __ B.£f!~DL-L "'" , I 

f-'---,--2 _'___0-t------'---t-'--'---'-----'---'---t-M"-'-"'-C~' S=-+-A.:..L..:;.C_'___C~U-'-M'-'-'-'----c:'---'-: =-0-'--'0"-'-=6+_-t-=0:....L..:.:2~/L-'6-'---'- : : s, E, T. , --'-' I I I I , I , 

f-,---'--3_'___0-f----'---t-'--'-----'-----'---'---~M~C~:5~0~O-'---O~8~L-~:~:--'---~+_~0~2~O~8~~~:--'---~4_~~~L~_~~~__'___~~~ 
, 4 0 w. I : : : AND £!?,I, NT 

f-'---'--~ _'___0'---t----'---t-'--'---'-----'---'---t-8'-'--~1 -t=L:J.' .:..:A_,___S=-..L..T-,--~:~: __'___~+_+--',----'--, -'-, -'-, ___ -'-~-'-: --'----'--1_~A_=_t_=L::.L.:.cA .L~T.L ,c, A, R:::'-'---f)'--, -'-, _~-'---'-, __ .L-.J~---'---j 
r'~6~0~~~-L-L~--L-~8~+I-FS~T~A~R~T~:~:--'---~+_+~,-i,-L, ~!--'---~-.!.:~-L4-,~,~~~~~~-'--~--'---~~ 
r'-'--7_'___0~~+L~A~S~T----'----L-rH~+I_r~~~~-L~:~-~:0~O~3+_~-i-~~~~~--'---~~~rY-,-Ec,S, ~~_~_~_~-L­
r''--'--=-.s ~O~~~~-L-,-~-¥-H-,-,-+' -+--~~~__,___-,:'-!.: __'___--'---+-~~-L---L..~~:~-L---I_+-~--'---l.-~--"--l----"-------'-----L--'---"----'----"------l-

, 9 0 
I , I , 
I , , , l----L-L. ~1 I I I I I ~_ 

Page No, ~ of _2 __ 
, 2 

(AI OPERAND (BI OPERAND 

LINE COUNT LABEL OPERATION I;J CHAR. g 1;1 CHAR. g d COMMENTS 
ADDRESS ADDRESS 

3 ~ 6 7 8 '3 '4 '6 '7 
ADJ. 

27 28 
ADJ. 

38 39 40 55 

0 , 0 /4 ACCUM DC'W~ 
, , , 

I 4 CH A R, F.OR MULT , , , 
0 2 0 02 C,¢,UNT DC'W~ 

, , 
I , 

0 3 0 01 Z E.R,tP OCIW¥ :0 
, 
I 

0 4 0 03 INTA DD OC1W * :0 13 
0 ~ 0 01 ¢,N.£ Oc'W * :/ 
0 6 0 01 F.IVE OCIW ~ :5 
0 7 o 06 CI OCIW "* :083 .3 33 L -L....-.L-----L-J __ 

o S 002 T w'L VE DC:W ~ +:/2 
o 9 0 ENID START. 

, 
I L-L_....L~L-

, o 0 
I I 

I ~ __ ...L -- , - --- -
Figure 6.3. Program to compute an average, as diagrammed in Figure 6.2. 



about the way computers are programmed. The 
student is urged to understand this example thor­
oughly before proceeding. 

With this basic loop clearly understood, we can 
without too much difficulty extend it to include 
finding the month with the largest usage. This can 
be done by starting with the initial assumption 
that January has the largest usage. A 1 is stored 
in a location that will contain the number of the 
month having the largest usage. January's usage 
is then compared with February's; if January's is 
larger, then January is still the largest of those 
considered so far and the 1 is maintained as the 
number of the month having the largest usage. If, 
on the other hand, February has larger usage, then 
February's usage is moved to the location contain­
ing the largest usage so far and a 2 is placed in 
the location containing the number of the largest 
month. This "largest usage to date" is continually 
compared with each succeeding month and either 
left where it is if it is larger or replaced by another 
month. 

In order to simplify the loop, we will actually 
begin by comparing January's usage with itself. 
Thus we avoid having to set up a somewhat longer 
initializing section to get the loop properly started, 
bearing in mind that in this testing we are still 
accumulating the total usage in order to develop 
the average. This may seem like a waste of time, 
which it is, but it is worth it: we are saved the 
complication and the space that would be required 
to make the loop operate differently the first time. 
This also is a rather general situation. Simplicity 
is usually a virtue in programming, since it reduces 
the likelihood of making mistakes. Furthermore, 
the time that might be saved by repeating the loop 
one less time would probably be completely offset 
by the extra instructions that would be required 
to get it started properly. 

A block diagram is shown in Figure 6.4 and a 
symbolic program in Figure 6.5. In this complete 
program there are a number of additional things 
to initialize. Besides the accumulator and the 
counter, there are now three variable addresses to 
start properly. January's usage must be moved 
to LARGE and a 1 must be put in the month num­
ber. This last is transferred with a Zero Add to 
get the one-digit constant of 1 into the two-digit 
field. 

The variable address Add instruction is as before. 
We next compare the current month's usage with 
what is so far the largest usage. The first time 

ADDRESS MODIFICATION AND LOOPS 83 

through January is compared with January, but 
no damage is done and a few instructions are saved. 
If the one that has been largest so far is larger than 
the current month's usage, we branch directly to 

O~ACCUM 
O--COUNT 

Initialize 
addresses 

January~LARGE 
Ol--month 41= 

Add a month's 
usage to 

accumulator 

COUNT + 1 
--COUNT 

Add 5 to three 
addresses 

Compute average. 
Move average, 

PN,and month 41= 
to print area 

Yes 

No 

This month's 
usage to 
LARGE 

COUNT + 1 
-month 41= 

Figure 6.4. Block diagram of a procedure to compute the average 
of 12 numbers on a card and find which of the 12 is largest. 



84 IBM 1401 PROGRAMMING 

the modification section. If it is not, the current 
month's usage is moved to LARGE, the count is 
moved to the month number, and one is added to 
this count. This is necessary because the count as 
set up here is always one less than the number of 
the month with which we are currently dealing. 

The modification section is just about as before, 
except that there are three addresses to modify. 
The final instructions of the program are the same, 
except that the new field must also be moved to 
the print area. 

REVIEW QUESTIONS 

1. Suppose the COUNT had been initialized to 1 
instead of zero. What constant would have to be 
changed? 

2. Suppose the COUNT had been tested before adding 
1 to it. What should the COUNT be tested against in 
this case? 

3. What would happen if a Zero and Add instruction 
were used to transfer alphabetic data? 

(Al OPERAND 

LINE COUNT 

o I 0 

6.5 Indexing 

vVe see in the program just completed that a fair 
number of instructions were used in doing nothing 
but modifying addresses. In many programs a 
rather high fraction of the total instructions are 
involved in operations that are required to get the 
program to operate correctly but which do not 
themselves directly process any data. A valuable 
machine feature in reducing this kind of red tape 
is the indexing of addresses. 

The basic idea of indexing is to leave the ad­
dresses of the variable address instructions un­
changed as they appear in storage and to modify 
them with the contents of an index register each 
time they are executed by the obj ect program. Be­
tween executions of the repeated portions of the 
loop we can change the contents of the index regis­
ter. This will have the effect of changing the effec­
tive address but will not actually change the in­
struction as it appears in storage, because the addi­
tion of the index register contents to the address 

(Bl OPERAND 

ADDRESS 1+ I CHAR. 

~I ADJ. 

I I 
I I 

Page No. LJJ of _2 __ 
I 2 

~ d COMMENTS 

38 39 40 

o 2 0 r A' Z E R ¢, i: ACe U II, : : I N, IT. Tl/J TAL 
o 3 0 Z AI r E R,rj, :: c,a U M To : : if CO U NT E R 
o 4 0 M C I WIN TAD D: : ADD I N 5: +: 0 03 I N. IT. 
o 5 0 MC'WINTADD: C,(/),M.INS:+:003 ADoRE55E5 
o 6 0 M C'W IN TAD D: M~ V I N 5:+:003 X 
o 7 0 Me 'w 0 0 / 3: L A R G, E. : : JAN. USA ti Eo 
o 8, 0 ZA ' IrJ,NE i M~NTHN: : M(j,NT.H N(/),. I 
o 9 0 ADD INS A I 0000: Ace U M :-' 007 5 U AI. - V A R. ADD R 5 
I 0 0 C,¢,M INS C I 000 0: L A R. G E : C,r),M P U 5 A G £ 
I I 0 B 1 M r),D I F Y' : U 8 R. I F. L A R G E R 
, 2 0 M, ¢, V INS Me' WOO 0 0 I L A R G E : T HIS M ¢, • L A R G E R 
I 3 0 MC'WC,(/)UNT M.r/JNTHN: Mr),VE N,(j,. Tr), N~. 
, 4 0 A I ¢ N E M~N T H N: IF LA R G E 6 T. M¢,N T H 
I 5 0 M¢,OIFYA 'I(J,NE C.r)UNT. : INC. C.¢,UNT 
I 6 0 

A I F.IVE C,(j.M.INSi+:003 ADDRESSES 
A : FI V E M~V I N,S:+:O 03 X , 8 0 

_, . 7 0 

I , I I I 
, , , I , , , , , , , , 

- -
Figure 6.5. Program to carry out the procedure diagrammed in Figure 6.4. 



as written is carried out in the address registers 
and not in storage. To summarize: instead of ac­
tually changing the addresses of instructions that 
vary, we specify that before execution the address 
as written should be incremented by the contents 
of an. index register. This process does not change 
the instruction as it appears in storage; we can get 
the effect of a variable address simply by changing 
the index register contents. 

In a loop in which only one address has to be 
modified, this procedure does not offer any strong 
advantages unless there are specialized instructions 
for doing combination operations on the index regis­
ters. Even in the absence of such features, how­
ever, the indexing principle becomes very valuable 
if there are several instructions that have to be 
changed, since the same index register can be used 
to modify any number of instructions. The initiali­
zation now consists of just the one instruction re­
quired to put the proper initial contents into the 
index register, and the modification consists only 
of adding the required constant to the index regis-

(A) OPERAND 

ADDRESS MODIFICATION AND LOOPS 85 

ter. Furthermore, the index register now also serves 
as a counter that can be used to determine when 
the loop operation is completed. 

In the 1401 there are three index registers which 
are named 1,2, and 3. Index one consists of storage 
locations 087 to 089; index two, 092 to 094; index 
three, 097 to 099. 

To add the contents of an index location to the 
address of an instruction, we tag the address that 
should be modified. This is done, in actual machine 
language, by using the zone bits of the tens position 
of the address in the following pattern: 

TABLE 6.3 

Tens 
Index Position Zone 

Location Zone Bits Punch 

1 01 Zero 
2 10 Eleven 
3 11 Twelve 

Page No. LclJ of _2 __ 
I 2 

(6) OPERAND 

I 1 CAHDAJR.. ~_. 1.1 CHAR 6 d COMMENTS 
5 6 13 14 16 17 ;31 27 28 ADDRESS ~ I ADJ. . :8 39 40 55 

LINE COUNT LABEL OPERATION 
ADDRESS 

~O~I~O~4~~~~~M~+I~C~/~~~~:~:~~~~A~C~C~U~IM~I~:~:~1_ly~~~.MU~L.~_J~J.2, 
o 2 0 A I F I V E :: A C Cl.~U,.t!IM~I-,-I_---,-,,'O~I~0~5'1--t-t~'f!-JL~L{J.J._-L_._, .. . ~'_ .. '-_L .I ... ~_ .. _.~ __ 

o 3 ° MCIS ACe U M :-:006 02 /6 5 E ~-L-L_l-.~_'-___ l __ .J..._L.'-- __ L_ 

~O~4~O ~4~~~~--+,-,M~C~'5~O~O~O~8~.L-.J:-+-~-'--~-P'0~2:.L:0~8~-'---'~__L....L.+-HJ..L..R~_.J~_L-----'- .... L--1. ___ -'- . .1.._. ~_L._ 1_ 

o 5 0 M CiS U.@NTHN:O 2 2 I A N.~-"--l.---'_'_L .L-'-_. 

'~O:....c...:::6~O +----'4~..L_.l.---1___'__f_W=_'_+1 -t--,--'---:~'-:::::::---L.-":----:-~-t-t-~..L.-.L--'~-:----:-~L-..f--t-:-t,-;-PJ?.lLN.J~-.L~L--'---l ___ " . .l._L_L.....L-

~:~:~: f______14-'-..L-.l.---1--'-~~'C_"__+: ~~=:.J...:;~;-'--T-:'-'~~-'-+-+---'---'----'--,--'---:~~--L---'---t-t-A. kE~-:~:=:8~fL--~~~ __ ~ __ ~ ___ : __ ~~ 
1--'0::...L::.

9..L::-
0 t---'-+L=.L:...A:L

5
=-.L.

T.:....L.--'---f-H"-:-,---,-1 -f'-*'-'--~L--l----'---"'-_-;-: -=-O.L:O::..J...=3-t-t----'---'---'-----'---'--'-----:-~--'----r-t_~ I--'---...L....L._~-'---.-'-. ..--L_L __ '--L _L._~~_L. .. 
~1:....c...::.oLo~,--'---:+--'-"--...L.-'--..L-.~H!..J.....+: +--'--~___'_~-L..+-.L..-J._+-t-----'-..L-.L-'-----L.~-:----.l.....-J_+++-.L--1'---L----'-...L...L---'---.'-.-'---1..-..L--'--.L~.-.L-­
~I:....J....:..I .Lo=--+'-/-'--!,-4~A-'-1.::::CrC~UC.J..:..::M':'--+"D=_==C:71 W~¥:...L.-~---'-~-7--;--J..-l-+--+----'--'-L--l-----'----'-_;__-'--~t-t--- -----'----.L~_IL....J...I -'---_'-I --"-----'-_ '--~~L-L._..l_. 
~1~2.Lo+O~2~C~-~¢.U~N'_f_!_T--'---~D~C~1 W.!.f-!*~~L-.L__L.--!---!-: -=-'-~~f______1--'-...L.--'--~----;---L.--"--t--t-+-~~~. ~ .. ---'-_L_--'-----'-_"-_>_.'--_ 

I 3 0 0 / r. E. R rI, D C IW '* : 0 
~':.......-=4..Lo~O~3~I~Nl!...T,L!:A~D~D~D~C~!W~;f~~~--L.--!---:-: ~OJ...!/,---,-",3~t--'~...L.-'---'--:----;----L...L.-t--t--t----'-1 ~L--l-II--,--I ..L...l _ _'__.' _..L._L.._...l~L_.'_ . .L. 

~' -=-5~O ~O~/-tJ~~N'.L!E"'-'-----'-..L-~D~~C.l!IW.!.-f-!*~-'---'~__L.~--'-: .!..IL-l_++~--'---L-'--...L......!.--'--'---y+--t--'--L....L....J.-_.L....J...~--,.---'---L--L---'-----'--.-,.~-,­
f--:-i' ~6~O J-!:0~/+,-F-==I-,-,V~E~--,---~D~C:+,I W~~:.L...J.----1L-'-----,---!---;::5~::;-'--::=+-=-~-::-'----'-,--'---:-'---'~-"--...L.+-t-t----'---'----'---'---L..1_ . ..L---'-._,---,---,---,-----,-._. 

~1~7~oJ-!:0~6~~~/~~~~D~C~'~~~~~~----,-_~--,-:~0~8~~~~~~~~3_~L-'-~~-'--'---y~~~~~L_L_~_J~~ __ L~. __ , L. 

~' ~8..L.::..0 ~O~2-f-:T:.....c:..:W:.c:L~V~E..L-~D~C~'W-,--+='L-:..l--'---'L-'--"---'-'-+-'-: -'-.' =2::...l.--t-t---'--'----'----- ---'--;--'--.JI-----1-1 -t--_HI_.l __ .L:..c __ -'----'L_.L_-'-_-'----'- __ .L_ ... L __ L .L 

1--':...L..:.'9..L.::..0 +"O~~5L~A~R'-'-'--'G~E'-'--t=D':::l-"'C~: W::.r-¥.:.J.....~'---'-----'----'----'-..LI --ll-r--t----'-- ---'---'--.L.....!~---L--'--_+_+_+-L...J.....-L-l-- '--'-_..1 __ 1. __ '-•. -'--., _-' __ 

2 0 0 02 M. ¢,N T H N D C1W ~ 

Figure 6.S (Continued). 



86 IBM 1401 PROGRAMMING 

O--Index 1 
O--ACCUM 

January-- LARGE 
I--month :If 

1-month counter 

Add a month's 
usage to 

accumulator 

Add 1 to month 
counter. Add 5 

to index 1 

Compute average 
Move average 

PN and MN 
to print area 

Yes 

No 

This month 
usage to 
LARGE 

Month counter 
Month :If 

Figure 6.6. Figure 6.4, modified to show the use of indexing. 

On the symbolic programming sheet it is neces­
sary only to write the number of the desired index 
location in the appropriate IND column-that is, 
column 27 or 38. 

When an indexed instruction is executed, the se­
quence of operations within the machine is as fol­
lows. The instruction is first brought to the control 
section registers just as it always is. During this 
process the zone bits of the tens position are de-

tected as specifying indexing. The contents of the 
specified index location are obtained from storage 
and added to the contents of the address register. 
The instruction is then executed. Note that the 
instruction as it appears in storage is not changed 
by indexing. (The .index locations are, of course, 
not changed either.) The address as modified by 
the contents of an index location is called the 
effective address. 

In order to change the effective address, it is 
necessary only to change the contents of the index 
location, which may be done with ordinary 1401 
instructions. To do this, the index locations will 
ordinarily have to have word marks, since the lo­
cations are not treated any differently than any 
other locations in storage, except as they are called 
on by the execution of an indexed instruction. 
When the index locations are not being used for 
indexing, they may be used for other purposes. 

We may see how indexing can be used by re­
writing the program of the last subsection. The 
basic logic is not appreciably different. There are 
fewer instructions, for by initializing the one index 
location we initialize the effective address of the 
three instructions that must have variable ad­
dresses, and one instruction that adds 5 to the 
index changes the effective address of all three. 
Furthermore, the index can also be used as the 
counter. We write the instructions that are to 
have variable effective addresses with actual ad­
dresses of 0013. The index location, which is 
chosen to be 1 in the program shown below, is ini­
tialized to zero. Each time through the loop 5 is 
added to this location; loop testing consists of ask­
ing whether index 1 contains 60. 

The block diagram for this program is shown in 
Figure 6.6 and the program, in Figure 6.7. 

In this particular program it is still necessary 
to have a counter that counts by ones to know 
the month number as we make the comparisons 
to find the month having the largest usage. In 
this particular case it would not matter much 
whether the loop testing were done by using the 
index register or by comparing this month counter 
against 13. In many problems, of course, there 
would not be this choice. We see that even though 
it is necessary to have what amounts to two loop 
counters, the program is still somewhat shorter than 
the unindexed version. We note that the three 
instructions that have variable effective addresses 
were written with actual addresses of 0013 and that 
index 1 is specified in column 27 in each case. It 



happens not to be necessary here, but it is also 
permissible to index B-addresses. 

This example nicely illustrates the power of the 
indexing technique in reducing the auxiliary opera­
tions of an address modification loop. Since we are 
concerned primarily with the concept and not with 
the details of operation, we are omitting a complete 

(A) OPERAND 

LINE COUNT LABEL OPERATION CHAR. ~ ADDRESS 

ADDRESS MODIFICATION AND LOOPS 87 

description of what the machine does in certain 
situations involving addresses over 999 and a num­
ber of other matters that are important when using 
the 1401 but are not crucial to the indexing concept. 

Index registers, which are also sometimes called 
B-boxes, or indexing accumulators, are available on 
most computers. In some machines there are more 

Page No. W of -=2=---_ 

(B) OPERAND 

CHAR. g d COMMENTS 
ADDRESS 

3 5 6 7 8 13 14 16 17 I;J ADJ. 
27 28 1~1 ADJ. 

38 39 40 ~~ 

START R I 1 1 o 1 0 1 1 

ZA ' 2ERr¢, 0089 1 1 2ER,¢, T,¢ INDEX 1 o 2 0 1 1 

o 3 0 .z A' z. E. R,t), ACCUM. 1 1 :c ER,f/;, T.¢ TAL 1 1 

o 4 0 MC'W 001.3 LARGE 1 : J.AN.. USAGE 1 

ZA ' !tiNE M¢NTHN: 
, M,r/J,N T H N,¢ . I o ~ 0 1 

ZA' I¢,N E M T H C ToR: 1 I T,¢ Mf/;,N T H C,¢UNT o 6 0 1 

o 7 0 ADDINSA : 00/.3 IACCUM :-1007 INDEXED 
C~MINSC I 00/3 ILARGE 1 X o 8 0 1 

B I M¢D IF Yl 1 U BR. IF LARGER o 9 0 1 

1 o 0 M¢,v INS MC 1W 00/3 1 I LA R BE 1 INDEXED 1 1 

1 1 0 MCIW MTH C T R: M,(j)NTH N: N¢. LARGEST M,¢.N. 
1 2 0 M~DIrYA I I¢NE 1 M T H. C T R: ADD I 1 

1 3 0 A : FIVE 1 0089 1 I MD EX 1 .,. s: 1 , 
1 4 0 C I o 0 lJ 9 

, 
SIXTy' 1 FINISH.ED ,Q, , 1 

B I ADD INS: 
, 

1/ N.(j), 1 ~ 0 1 

6 0 M I CI 1 A C CUM, 1 YES. MULT. I /,1 2 1 1 1 

A 
, 

FIVE 1 , 
ACCUAI. :-,005 R,¢ UNO 1 7 0 1 , 

MC'S ACCUM :-:006 0216 1 1 SET, 1 8 0 1 1 

MC:S 0008 1 1 020.8 1 1 UP. 1 . 9 0 1 1 1 1 

MC'S Mrj,NTHN: 1 0221 1 1 AND 2 0 0 1 1 1 , 1 , , , 
1 1 1 1 

I , , , 1 
1 1 1 1 -- , - 1 -

Page No. ~ of ----'2~_ 

(A) OPERAND (B) OPERAND 

LINE COUNT LABEL OPERAT'ON I;J CHAR. ~ I~I CHAR. g d COMMENTS 
ADDRESS ADDRESS 

3 5 6 7 B 13 14 16 17 
ADJ. 

27 28 
ADJ. 

38 39 40 55 

W. I , 1 1 1 PRINT. 0 1 0 1 1 I 1 

B 
, 

LAG T 
, 1 1 1 ALAST C A,R,D, Q, 0 2 0 1 , 1 

B I S T.A R T I 1 1 N,~, o 3 0 I 1 , 
4 0 LA5T H I ¥ :-1003 1 Y,E5 0 

H 
, , 

0 5 0 1 

0 6 0 14- ACCUM OC'W ~ 1 
1 

o 7 0 01 ZER,¢ DC'W~ 1 0 
o a o 01 I¢.NE DC:W ¥ 1 
o 9 o 01 F.IVE DC'W ¥ E 
I o 0 06 CI De'W* 083 333 
1 1 o OS URGE DCIW 1*, 
1 2 0 02 M..¢,NTfi N DC'W if 
1 3 0 02 MTH C TR DC:W¥ 
1 4 0 02 SIXTY DC:W ¥ h60 
I 5 0 03 DeW 0089 

, 
1 

1 6 0 ENID BTA RT I 
1 , 1 1 

I 7 0 
.L. I 1 

~8 n _ , 1 I - -I -- - - - --
Figure 6.7. The program of Figure 6.5, modified to use indexing. 



88 IBM 1401 PROGRAMMING 

than three, 10 being a typical number. In some 
machines the contents of the index register are sub­
tracted from the actual address instead of added 
to it. In a number of computers there are special­
ized instructions that make indexing even more 
powerful. At least one computer has an instruction 
that is a combination of a conditional branch and 
a subtract, making it possible to write useful loops 
that have only two repeated instructions. 

REVIEW QUESTIONS 

1. Does indexing change the indexed instruction as it 
appears in storage? 

2. Is indexing done in the processor or in the object 
program? 

3. Is it possible to have both character adjustment 
and indexing of a single address? Explain the effect of 
each and when each is done. 

4. What are the advantages of indexing? 

EXERCISES 

*1. In the program of Figure 6.3 the variable address 
of the Add instruction could be used as a counter to de­
termine when the loop has been executed 12 times. Re­
write the program accordingly. Hint. Determine care­
fully what the loop testing constant should be. 

2. Modify the block diagram of Figure 6.4 and the 
program of Figure 6.5 to produce on the report the 
number of the month having the smallest usage as well as 
the largest. Write with or without indexing. 

3. Modify the block diagram of Figure 6.4 and the 
program of Figure 6.5 to print an X behind the month 
number if two or more months had a usage larger than 
all others. Write with or without indexing. 

*4. Draw a block diagram and write a program to do 
the following. Read a card and move columns 1 to 20 
to 0401 to 0420; read another card and move columns 
1 to 20 to 0421 to 0440; read another card and move 
columns 1 to 20 to 0441 to 0460, etc. When columns 1 
to 20 of 20 cards have been moved to the new locations 
(the information from the last card goes to 0781 to 0800), 
leave a blank line in your program for writing the 400 
characters in 0401 to 0800 onto magnetic tape. Then 
assemble another block of 400 characters in 0401 to 0800 
and indicate writing on tape. Continue writing on tape 
until all cards have been read. 

The number of cards in the deck is not necessarily a 
multiple of 20, so a last-card test must be made after 
moving each group of 20 characters. When the last card 
is detected, indicate the writing on tape of the last block, 
even though it is most likely not full. Write with or 
without indexing. 

5. Columns 21 to 22 of an invoice card contain a two­
digit state number between 01 and 50. Write a program 
segment to find the four-character alphabetic abbrevi­
ation corresponding -to the number and place the ab­
breviation in positions 0237 to 0240 in the print area. 
There is a table in storage as follows: 

State 
Number 

01 
02 
03 
04 

50 

A loop is not necessary. 

Address of 
Abbreviation 

0785 
0789 
0793 
0797 

0981 



7. MISCELLANEOUS OPERATIONS 

7.1 Editing and Format Design 

Many business applications of computers 
require that reports be printed. These in­
clude such things as checks and earnings 
statements, sales summaries, bills to cus­
tomers, deduction registers, and inventory 
summaries. In the printing of most such 
reports it is necessary to spend a fair amount 
of effort in planning for ease of readability. 
This area includes a number of activities 
such as planning the proper spacing of the 
information on the report, numbering of 
pages, printing of headings, proper place­
ment of total lines, insertion of dollar signs, 
commas, and de,cimal points, and suppression 
of unwanted zeros in the high-order posi­
tions of numbers. This planning of the 
format and appearance of reports can take 
a considerable amount of time, and it can 
also easily happen that a sizable fraction 
of an entire program will be taken up with 
editing results for printing. 

In this section we consider the horizontal 
placement of information within a line. In 
Section 7.2, on carriage control, we discuss 
the vertical positioning of the lines on a page. 

The fundamental consideration in plan­
ning the spacing of information on a line is 
that sufficient space must be allotted to con­
tain the largest quantity that can ever be 
printed, with at least a few additional spaces 
to make the reading easier. Some printing 
fields are of constant length; a social secu­
rity number, for instance, always has nine 
digits and is almost always printed with two 
hyphens. Many other fields are of variable 
length, such as a man's name or almost any 

dollar amount. The first step in planning, 
therefore, is to determine the maximum size 
of each field to be printed. 

Next we decide the sequence of informa­
tion across the line. Sometimes this is spe­
cified in advance; at others, it is left to the 
programmer to decide. Usually a fairly 
logical scheme will suggest itself. For in­
stance, if a sales summary is to be printed, 
it would be uncommon to begin the line with 
anything but the product number. Some­
times the arrangement of information on a 
line-and perhaps even the spacing-is pre­
determined by the use to which the report 
will be put. For instance, W -2 forms for 
withholding summaries are usually available 
in preprinted form; the program designer 
must put the information in the spaces al­
lowed. This touches on the whole broad area 
of forms design, which is somewhat outside 
the scope of this book. 

Next, we consider any editing that is to 
be done on each field as it is printed. For 
instance, most dollar amounts are printed 
with a decimal point, commas, and a dollar 
sign. Naturally, these punctuation marks 
must be included in planning the amount of 
space required for each field. Very com­
monly, leading zeros at the beginning of the 
number are deleted in printing. 

The computer techniques by which the 
fields are printed with punctuation marks 
and by which zeros are suppressed naturally 
depend on the instructions available in the 
particular computer. As we have seen, there 
are several specialized instructions available 
in the 1401 that greatly simplify editing. 
The Move Characters and Suppress Zeros 

89 



90 IBM" 1401 PROGRAMMING 

TABLE 7.1 

Maximum 
Number of 

Field Symbol Characters 

Customer number CUSTNO 5 
Customer name CUSTNA 25 
Invoice number INVNO 5 
State STATE 2 
District DIST 2 
Invoice month MONTH 2 
Invoice day DAY 2 
Invoice amount AMOUNT 6 

instruction makes a simple matter of deleting the 
leading zeros, if that is all that is required .. The 
Move Characters and Edit instruction, as we have 
seen, greatly simplifies the insertion of punctuation 
symbols and, in fact, is able to do a good deal more. 
It may be worthwhile to review the basic functions 
of this instruction before pointing out one or two 
additional features of it. 

The Move Characters and Edit instruction re­
quires that an edit control word be placed in the 
output storage area before the data is edited. This 
edit word will contain any punctuation marks that 
are to be inserted in the field. When the instruction 
is executed, characters from the A-field are moved 
to the B-field, working from right to left, except 
that characters in the B-field other than zero and 
blank are not disturbed. This means ordinarily 
that dollar signs, commas, and decimal points are 
left unchanged in the B-field. However, almost any 
other character may be put into the edit word and 
will also be left unchanged. An exception is the 
ampersand, which, if present in the edit word, will 
be replaced by a blank and the blank will not be 
disturbed by the movement of characters from the 
A-field. This makes it possible to insert blank 
spaces in the edited field, such as between a dollar 
amount and the letters CR for credit. 

If suppression of leading zeros is desired, a zero 
should be inserted in the control word. After the 
A-field has been transferred to the B-field, then 
leading zeros will be deleted down to and including 
the original position of the zero. The point of this 
qualification on the position of the zero is that there 
is usually a maximum amount of zero suppression 
desired. For instance, if we have set up the pro­
gram to print amounts in dollars and cents, we 

ordinarily want amounts under one dollar to be 
printed in the form .xx. The limit is indicated to 
the machine by the position of the rightmost zero 
in the control word. The zero suppression part of 
the editing operation also replaces with blanks any 
commas to the left of the first significant digit in 
the field. 

The editing operation can be used to do some­
thing else. In planning output formats, it is always 
necessary to decide what is to be done with nega­
tive amounts. These are most commonly printed 
with a minus sign; they can also be indicated by 
the letters CR. The question arises: if the field 
to be printed can be either positive or negative, 
how do we handle the decision to print the minus 
sign (or the credit symbol)? The Move Characters 
and Edit instruction makes provision for this prob­
lem. To describe its action, we must define the 
body of the control word and the status portion of 
the control word. The body is the part beginning 
with the rightmost blank or zero and continuing to 
the left until the character at which the A-field 
word mark is sensed. The remaining portion of the 
control field is referred to as the status portion. 
The handling of negative amounts is as follows: we 
insert the minus sign or the characters CR, which­
ever is desired, in t.he status portion of the control 
word. The Edit instruction automatically deter­
mines whether the number in the A-field is positive 
or negative. If it is negative, the minus sign (or 
the CR) is left in the field; if the data field is posi­
tive, the symbols are blanked out. 

For an example of the use of these features, con­
sider the printing of a line of an accounts rec~iv­
able register. Shown in Table 7.1 is the informa­
tion that must be printed, the symbol assigned to 
each field in the program of Figure 7.1, and the 
maximum number of characters in each field. 

The customer name is alphabetic and is to be 
printed exactly as it appears in storage. All the 
other fields except the dollar amount are to be 
printed with simple zero suppression. The date is 
to be printed in two columns to separate the month 
and the day. The invoice amount is to be printed 
with a dollar sign, comma, and decimal point. 
It must also be printed with a CR if the amount 
is negative. (This would, of course, indicate an 
"invoice" sent out to show a credit from an over­
payment.) The CR is to be printed one position 
to the right of the amount-that is, with one~ blank 
between the pennies and the C. 



MISCELLANEOUS OPERATIONS 91 

0 0 0 
IBJ.1 1401 Symbolic Programming System 

Coding Sheet 
Poge No. ~ of ___ Progrom 

I 2 

Progrommed by Dote Identificotion I I I I I I 
76 80 

(AI OPERAND (Bl OPERAND 

LINE COUNT LABEL OPERATION CHAR. ~ CHAR. g d COMMENTS 
ADDRESS ADDRESS 

3 5 6 7 8 13 14 16 17 I;J ADJ. 
27 28 I~I ADJ. 

38 39 40 55 

0 I 0 MC~W C,USTNA ' 0225 I 
I 

M.CIS C US TN rJ;: 0233 
I 

0 2 0 1 

o 3 0 MCIS 5 T.A T E 0238 I 
I 

o 4 0 MC'S DIST 0243 I 
I 

o 5 0 Me'S I N V N (j, 02S/ : 
o 6 0 Me's M. (j,N T H 0256 1 

I 

o 7 0 MC:S DA Y 0259 I 
I 

o 8 0 MC'W E oI TWD, 0274- I 
1 

o 9 0 MC'E AM (j,U NT: 0274- 1 
I 

I o 0 H : ~ I I 
1 1 

I I 0 /2 EO I T w.o DCIW * 
1 :/1, o. 8.:C,R I 

I Z 0 
I I 1 I 

1 I 1 
1 ...... 1 I 1 -'---

Figure 7.1. Program illustrating editing operations. 

In the absence of a predetermined format or an 
existing form that must be used, we are free to 
make our own decision as to the order in which 
these data fields should be printed on the line, as 
well as their spacing. It seems reasonable to begin 
the line with either the customer number or the 
customer name and to group the customer name, 
number, and location at the left of the line. The 
invoice number, date, and amount could reasonably 
be printed in that order toward the right side of 
the line. Let us agree rather arbitrarily tG print 
the customer name first. Now, considering the 
editing symbols that will be inserted in the invoice 
amount, allowing, say, three spaces between fields, 
and assuming that we begin printing with print 

TABLE 7.2 

Field 

Customer name 
Customer number 
State 
District 
Invoice number 
Month 
Day 
Amount 

Position 

1-25 
29-33 
37-38 
42-43 
47-51 
55-56 
58-59 
63-74 

position 1, we arrive at the assignments for the fields 
on the report shown in Table 7.2. 

The program segment required to set up the 
printing line once the data is in the symbolic lo­
cation shown is presented in Figure 7.1. For sim­
plicity in studying the principles of editing, the 
addresses are shown in absolute. We understand 
that in ordinary practice these should be symbolic. 

Note that the edit control word is shown with 
an ampersand, which will cause the edited field to 
contain a blank space at that position. The credit 
symbol is shown as the characters CR; these are 
deleted by the execution of the instruction if the 
amount is positive (as, of course, it is in most 
cases). The zero in the edit control word indicates 
the rightmost limit of zero suppression. The comma 
is deleted if the amount is less than a thousand 
dollars. If zero suppression does occur, there will 
be blanks between the dollar sign and the first 
digit of the amount. (An optional feature on the 
1401, called expanded print edit, would make it pos­
sible to move this dollar sign so that it would be 
immediately to the left of the first significant digit.) 

REVIEW QUESTIONS 

1. What does the zero in an edit control word do? 
2. Name some of the considerations in deciding on the 

placement of information in a printed line. 



92 IBM 1401 PROGRAMMING 

Figure 7.2. Tape.read ing mechanism of the tape-controlled ca rriage 

in the 1403 Pri nter. 

7.2 Printer Carriage Control 

Control of the vertical spacings of lines on a 
report is necessary for a variety of reasons. Some­
times a heading line must be printed at the top of 
a page and separated from the body lines by one 
or two lines of space. Often a preprinted form re­
quires that the printing appear in specified posi­
tions on the form, making it necessary to space the 
paper to these positions before printing. Some­
times there is a variable amount of information to 
be printed on each pagl-, followed perhaps by a total 
line, after which the form must be spaced to the 
top of the next page. This might happen, for in­
stance, if all the purchases by One customer have 
to be listed, starting on a new page, followed by 
a total line. After this, of course, the information 
for the next customer should start at the top of a 
new page. 

Control of the spacing of the output document 
is accomplished by a combination of programmed 
signals to the printer carriage and a control tape 
in the carriage itself. The control tape is prepared 
for each application, or each group of similar ap­
plications, with holes in proper positions to indicate 
where carriage spacing is to stop once it is started. 
The tape-reading mechanism is shown in Figures 
7.2 and 7.3. The mechanism is seen to be in some 
ways analogous to a card-reading system. That 
is, brushes are kept from making contact with an 
electrically charged roller, except where holes ap­
pear in the loop of paper tape. 

A control tape has 12 columns of positions indi­
cated by vertical lines. These positions are called 
channels. Holes can be punched in each channel 
throughout the length of the tape, which is ordi­
narily the same length as one complete page. A 
maximum of 132 lines can be used to control a 
form, although for convenience the tape blanks are 
slightly longer. Horizontal lines are spaced six to 
the inch, the entire length of the tape, which corre­
sponds to the height of one line of printing. If the 
form has fewer than 132 lines (most do), then the 
tape can be cut off at the desired length. Round 
holes in the center of the tape are provided for the 
pin feed drive that advances the tape in synchro­
nism with the movement of a printed form through 
the carriage. The effect is exactly the same as if 
the control holes were punched along the edge of 
each form. 

At any point in a program where skipping of the 
form to a new printing position is desired, a signal 
can be given by using the Control Carriage instruc­
tion. The B-character of this instruction specifi~s 

which channel of the tape is to stop skipping, as 
shown in the summary box. For example, if a 
skip to channel 6 is called for, the paper will start 

Figure 7.3. Carria ge ta pe brushes. 



moving and will stop only when a hole in channel 
6 is detected. Depending on the purpose of the 
form control operation, there may be only one hole 
in a channel or there may be several holes, and, of 
course, there may be unused channels. The Control 
Carriage instruction may also be used to cause the 
spacing of one, two, or three lines not under control 
of the control tape. This function is also shown 
in the summary box. 

It is essential in using the two types of spacing 
(not skipping) to realize that there is normally one 

Control Carriage 

FORMAT 

MISCELLANEOUS OPERATIONS 93 

space after printing. If an immediate space is used, 
then there will be as many lines spaced over as are 
called for by the d-character. If a J is written, 
then one line will be spaced, etc. After spacing, 
the line is printed and then the paper is spaced one 
line as normally. When spacing after printing is 
called for by writing a slash, S or T, the number 
of spaces prescribed will be the total number of 
spaces after printing, including the one that nor­
mally occurs. Thus a Control Carriage instruction 
with a d-character of slash has no net effect. A 

Mnemonic 

CC 

Op Code 

F 

d-character 

x 

FUNCTION This instruction causes the carriage to move, as specified by the d-character. A digit causes 
an immediate skip to a specified channel in the carriage tape. An alphabetic character with a 12 zone 
causes a skip to a specified channel after the next line is printed. An alphabetic character with an 11 zone 
causes an immediate space. A zero zone character causes a space after the next line is printed. The table 
shows the function of the d-character. If the carriage is in motion when a Control Carriage instruction is 
given, the program will stop until the carriage comes to rest. At this point the new carriage action is initi­
ated, and the program advances to the next instruction in storage. 

d Immediate skip to d Skip after print to 

1 Channell A Channell 
2 Channel 2 B Channel 2 
3 Channel 3 C Channel 3 
4 Channel 4 D Channel 4 
5 Channel 5 E Channel 5 
6 Channel 6 F Channel 6 
7 Channel 7 G Channel 7 
8 Channel 8 H Channel 8 
9 Channel 9 I Channel 9 

+ Channel 10 0 ChannellO 0 
# Channelll Channelll 
@ Channell2 0 Channell2 

d Immediate space d Mter print space 

J 1 space / 1 space 
K 2 spaces S 2 spaces 
L 3 spaces T 3 spaces 

WORD MARKS Not affected. 

TIMING T = 0.0115 (LI + l)ms plus remaining form-movement time if carriage is moving when this 
instruction is given. The form-movement time is determined by the number of spaces the form moves. 
Allow 20 ms for the first space, plus 5 ms for each additional space. 



94 IBM 1401 PROGRAMMING 

d-character of S will call for one additional space 
and a d-character of T will call for two additional 
spaces. Finally, it must be realized that, although 
the immediate skip and the immediate space cause 
the requested action to take place as a result of 
this instruction, the skip after printing and the 
space after printing become effective only after the 
next line is printed. An after-print skip or space 
would have no effect if another line were never 
printed. 

If the carriage is already in motion when a Con­
trol Carriage instruction is executed, the program 
waits until the carriage comes to rest. At this time 
the new carriage action is initiated and then the 
program advances to the next sequential instruction. 

The Control Carriage instruction, as we have 
described it, is a two-character instruction. I t is 
also pos~hle, however, to write an I-address, in 
which case the instruction is called Control Car­
riage and Branch. After carrying out the pre­
scribed carriage action, the next instruction is taken 
from the location specified by the I-address. 

One of the most common and at the same time 
simplest forms of operation is skipping to a new 
page when one page has been printed, perhaps after 
first printing a total line. There are two rather 
different ways to sense the end of a page. One 
way is to set up a program counter to count the 
number of lines already printed. When this counter 
reaches the number of lines in a complete page of 
the particular report, a Control Carriage instruction 
can be executed. (Although there is no logical 
necessity for doing so, the skipping to the top of 
a new page is most commonly controlled by a punch 
in channel 1.) 

The other way is to put a punch in channel 9 or 
12 in a position corresponding to the last printing 
position on the page. The detection of a hole in 
either of these channels turns on a corresponding 
indicator, which stays on until a punch in another 
channel is sensed. This makes it possible to print 
lines without counting them and to detect the end 
of the page by detecting the proper punch in the 
carriage control tape. This has the advantage of 
not requiring a program counter, which can some­
times be inconvenient. 

Whichever method of end-of-page detection is 
used, we often set up the signal so that it indicates 
only the end of printing in the body of the page. 
A typical page format consists of a heading line, 
a certain maximum number of body lines, and a 
total or summary line. The signal that the end 

of the page is about to be reached is needed when 
the last body line has been printed. We then com­
monly skip a line before printing the total and go 
on to the next page. The presence of two additional 
lines after the last body line must, of course, be 
taken into account in setting up the constant 
against which the line counter is tested or in punch­
ing the hole in channel 9 or 12 of the carriage 
control tape. 

REVIEW QUESTIONS 

1. State precisely what action is caused by the instruc-
tion 

CC 0800 S 

2. What would you do if a form were so short that the 
corresponding length of carriage control tape was not 
long enough to go around the tape reading mechanism? 

7.3 Input and Output Timing 

The discussion so far has said little about the 
timing of reading or punching a card or printing a 
line. The maximum speeds have been given, but 
these are hardly the whole story-in the 1401 or 
in any other computer. We must be concerned also 
with a number of other questions: 

1. If the maximum speed cannot be obtained, 
does the speed drop to some lower figure in a large 
jump? 

2. For what portion of the total reading or writ­
ing cycle is the computer waiting on the input-out­
put operation and unable to do processing? Con­
versely, for what portions of the total cycle is it 
possible for the computer to be carrying out proc­
essing? 

3. At what point during the cycle for one opera­
tion is it necessary to give the impulse to start 
another one if the device is to operate at maximum 
speed? 

Questions of this general sort must be considered 
in planning the programming of input and output 
operations in any computer. However, the features 
of individual machines vary so greatly that it is 
hard to make generalizations about all machines. 
Therefore, we turn to a detailed consideration of 
the 1401 as generally indicative, although not every­
thing we say applies exactly in the same form to 
other machines. 

Card reading in the IBM 1401 is carried out at a 



maximum speed of SOO cards per minute. This 
works out to 75 ms for the reading of one card. 
The 75 ms are divided into three portions as shown 
in Figure 7.4. The read start time of 21 ms is the 
interval between the starting of the cycle and the 
time when information actually begins to move into 
core storage. It is spent in moving the card from 
the hopper to the point where the nine row is under 
the brushes and information starts to transfer into 
storage. The card reading time of 44 ms is taken 
up with the reading of the 12 rows on the card and 
the transfer of the information into storage. The 
remaining 10 ms of processing time may be used 
for processing the information on this card and still 
maintain the reading of cards at maximum speed. 
If the instruction to read the next card is executed 
before the 10 ms processing time is completed, cards 
will read at full SOO-per-minute speed; if the proc­
essing time exceeds 10 ms, then the card-reading 
speed drops in one single jump to 400 cards per 
minute. 

This jump is caused by the fact that there is only 
one point in the cycle of the card reader at which 
an impulse to start the card-reading operation can 
be obeyed.1 If the impulse comes before the end 
of processing time, it will be obeyed-that is, an­
other card will be read, without any delay. If the 
impulse comes after the end of processing time, 
the mechanism will wait for another complete cycle 
to elapse before obeying the impulse. This means 
tha t there is no steady card-reading speed between 
SOO and 400 per minute. It can happen, however, 
that in some cases the succeeding card will be read 
with no delay and in other cases that there will be 
a delay of one or more cycles between the reading 

1 An optional feature called Early Card Read provides 
three starting points, thereby speeding up card reading 
considerably in some applications. 

CARD READING 

MISCELLANEOUS OPERATIONS 95 

of successive cards. In such a case the average 
card-reading speed may be some intermediate 
figure. 

It is important to realize that the computer is 
completely idle during read start time and card­
reading time. Stated otherwise: when a Read a 
Card instruction is executed, the next instruction 
is not executed until card-reading time for that in­
struction has been completed-that is, a minimum 
of 65 ms later. We say that the computer is inter­
locked during the read start time and the card­
reading time. (A special feature called read re­
lease is available for the 1401 to make the read 
start time available for processing.) 

Card punching is carried out at a maximum rate 
of 250 cards per minute, which works out to 240 
ms per card. This cycle is divided into three parts 
also as shown in Figure 7.5. The punch start time 
of 37 ms is the interval between the starting of the 
card motion and the beginning of actual punching. 
The punching time of lSI ms begins with the 12 
row. The 22 ms remaining is available for proc­
essing. 

The computer is interlocked during punch start 
time and punching. (If a special feature called 
punch release is installed, punch start time is avail­
able for processing.) To maintain full card-punch­
ing speed of 250 per minute, the instruction to 
punch the following card must be executed before 
the end of processing time. However, in the case 
of punching, there are four points during the cycle, 
occurring at 60-ms intervals, at which an impulse 
to start punching can be obeyed. Therefore, if the 
instruction to punch another card is given shortly 
after the end of the part of the cycle shown as 
processing time, the punching speed will not be 
slowed down to half the maximum. Instead, the 
following card will take 300 ms-that is, the nor-

800 CARDS PER MINUTE (Assume that operation code "1" was given during previous cycle) 

I

: 75 ms j 
.... E-R-d-2_1t_m_rtS_t-. -)H-I EE------------- car

44
d remasdl·ng ---------------:)~1t+(10 ms 

ea sa Ime 

The read start time may be used as process time 
if the "read refease" option is employed. 

Figure 7.4. Timing diagram for card reading with the 1402 Card Read-Punch. 

Processing 
time 



96 IBM 1401 PROGRAMMING 

mal 240 ms plus the 60 ms during which the com­
puter will wait until another punch impulse can 
be accepted. Thus the "penalty" for not getting 
the instruction to punch another card executed 
during processing time is not so heavy with punch­
ing as it is with reading. 

Printing is carried out at a maximum of 600 lines 
per minute, which is 100 ms per line. The cycle is 
divided into two basic parts, with another part of 
the total operation overlapping one of them, as 
shown in Figure 7.6. The printing time is 84 ms; 
during this period the computer is interlocked. The 
remaining 16 ms are available for processing; if the 
next print instruction can be given during this 
processing time, printing will be carried out at full 
speed. As we have seen before, printing is always 
followed by a single line space unless a Control 
Carriage instruction has been executed to specify 
otherwise. The normal single spacing takes 20 ms, 
which completely overlaps processing time. It is 
important to note that any skipping that may have 
been specified, either immediate or after-print, does 

',not overlap any of the processing time. On the 
other hand, the computer IS not interlocked during 

CARD PUNCHING 

the skips unless the skip instruction happens to be 
executed when the carriage is already in motion, 
in which case the computer is interlocked only until 
the preceding movement is completed. 

The printer is able to accept an impulse to print 
a line at any time. If the instruction to print the 
next line can be given before the end of processing, 
printing will proceed at full speed. If the instruc­
tion to print the next line cannot be given during 
processing time, the only time penalty is the ex­
cess over processing time; we do not have to wait 
until some specified point in the following cycle. 
In short, the printing cycle begins whenever the 
W rite a Line instruction is executed. 

The total time for input and output operations 
in the 1401 can be somewhat reduced if it is feasible 
to use combined operations. The Write and Read 
instruction, for instance, combines the functions of 
Read a Card and Write a Line. Its mnemonic op­
eration code is WR and its actual operation code 
is 3. When this instruction is executed, the printer 
takes priority and the print cycle is completed be­
fore the actual card-reading operation takes place. 
However, the execution of the instruction is set up 

250 CARDS PER MINUTE (Assume that operation code "4" was given during previous cycle) 

1~:~ ___ 3_7_m_s __ ·~)~I~(~ __________________ 24 __ 0m:lms ________ --------------+)+I~. 22ms~ 
PUnch start time • Punching process,,:! 

time 

The punch start time may be used as process time 
if the "punch release" option is employed. 

Figure 7.5. Timing diagram for card punching with the 1402 Card Read-Punch. 

CARD PRINTING 
600 LINES PER MINUTE (Assume that operation code 1/2" was given during previous cycle) 

r: 
-------100ms------1-6ms~--'" 

....... _~-------------- 84 ms _______________ . -))-tI.....:(~prOCeSSing~ 
Printing time 

~ 20ms .--+ 
.----Form movement 

Figure 7.6. Timing diagram for printing with the 1403 Printer. 



so that the signal to start the reader is accepted 
before the end of the print cycle. Thus read start 
time overlaps the print cycle, with a reduction in 
the total time required for the two operations. This 
total time is 150 ms, of which the last 21 ms are 
available for processing. 

The Read and Punch instruction (mnemonic RP 
and actual 5) combines these two operations with 
an even more favorable overlap. Here, the two 
operations occur simultaneously, with the total 
time, 240 ms, being that for punching a card. The 
time available for processing is 22 ms. 

Write and Punch (mnemonic WP and actual 6) 
combines these two functions. The situation on 
overlaps is about the same as with Write and 
Read: the printer takes priority, but the start 
punch signal is automatically given by the ma­
chine before the end of the print operation. There­
fore, the punching begins very shortly after the, 
printing is completed. The total time for the two 
output operations is 300 ms, of which the last 28 
ms are available for processing. 

The Write, Read, and Punch instruction combines 
all three operations. The mnemonic code is WRP 
and the actual code is 7. Here the printing takes 
place first, immediately after which reading and 
punching occur simultaneously. The total time is 
300 ms, of which the last 28 ms are available for 
processing. 

The effective use of these combined instructions 
naturally depends on rather careful planning of the 
program to insure that the information in the read, 
punch, and print areas is set up in such a way that 
the combined operations produce correct results. 
To take a simple example, suppose that we are 
required merely to read a deck of cards and print 
the information on each of them. We immediately 
think of using a Read and Write combination. 
However, this can obviously not be done on the 
first card because as we begin there is nothing in 
the print area to be printed. Therefore, we start 
with a Read a Card instruction. After the in­
formation has been moved from the read area to the 
print area, possibly with rearrangement of the data 
fields and editing, then the Read and Write com­
bination can be used effectively to print the infor­
mation in the print area and then immediately 
read another card without having to wait for the 
read start time. In every case, after setting up the 
information in the print area, we make a last-card 
test and, when it is satisfied, execute only the Write 
instruction. 

MISCELLANEOUS OPERATIONS 97 

REVIEW QUESTIONS 

1. Outline the timing differences between Read, Punch, 
and Print. 

2. Under what conditions can a complete job be done 
in just the time required for input and output? 

3. How much time does the WRP instruction save 
over doing the three operations separately? 

7.4 Buffering 

In most business data processing applications 
there is a relatively large amount of input and 
output. The total time required to do the job 
is often largely taken up with reading and punch­
ing cards, printing reports, and, as discussed in 
Chapter 8, reading and writing tapes. vVe have 
seen in the preceding section that a relatively small 
amount of the input and output time is available 
for processing in the 1401. In the absence of the 
buffering facilities to be discussed now, this is true 
in most computers. In fact, in some machines the 
entire cycle is unavailable for processing. This 
can very well mean that the total time to do the 
job is the sum of the times required for each of the 
individual input and output operations plus the 
total processing time. If the processing time is 
very much less than the input and output time, 
or if the processing takes a great deal longer than 
the input and output, then there is really not much 
to be saved by trying to overlap the input and out­
put with processing. 

However, it frequently happens that the input 
and output time is about the same as the processing 
time, in which case it becomes very desirable to 
set up the machine so that processing can continue 
during most of the time required for the input and 
output cycles. To take a specific instance, consider 
printing. We would like to be able to move the 
information to be printed from core storage to a 
small auxiliary storage (this can be done at elec­
tronic speeds) and then continue with normal proc­
essing while the information is moved from the 
small storage to the printer at the mechanical 
speeds of the printing device. 

The essence of buffering is this: on output, infor­
mation goes from core storage to the small auxiliary 
storage, which is called the buffer. Since no me­
chanical operations are required for this transfer 
between two electronic devices, it can be done at 
very high speeds. Then processing may continue 
while the information is sent out to the output de-



98 IBM 1401 PROGRAMMING 

vice at the speeds required of the mechanical device. 
On input, the process is simply reversed: informa­
tion is accumulated in the buffer storage as the 
input medium is read, and, when all of the informa­
tion has been assembled, it is transferred to core 
storage at high speed. 

Some computers have no buffering; others buffer 
virtually every input and output operation. The 
1401 can be equipped with an optional special 
feature called print storage, which puts it in an 
intermediate class. Print storage gives us buffer-

. ing of printing only. However, since in many appli­
cations printing time is a fairly sizable fraction of 
the total job time, this can mean a very significant 
reduction in the time required to do each job and, 
therefore, an increase in the data processing capa­
bility of the equipment. This is all the more true 
because print storage permits virtually all of the 
print cycle to be used for other processing, including 
other input and output operations. For instance, 
it is possible to keep both printer and reader running 
at 400 per minute and still have more than half the 
total job time available for processing. 

The 1401 print storage feature operates in just 
the manner described for output buffering in gen­
eral. When the Write a Line instruction is exe­
cuted, the information in the print area, positions 
201 through 300 (or 2d1 through 332) is moved to 
a special nonaddressable buffer storage. This trans­
fer requires only 2 ms, and it is only during these 
2 ms that the computer is interlocked from process­
ing. As soon as the information has been moved 
to the print storage buffer, processing can continue 
for the remaining 98 ms of the print cycle. As we 
have noted, it is possible to initiate other input­
output operations during this time. If another 
Write a Line instruction is given before the com­
pletion of the total 100-ms print cycle, the com­
puter will interlock until the completion of the 
preceding cycle, at which time the next cycle will 
begin. 

The effective use of buffering requires a certain 
amount of preplanning of the program organization. 
For instance, if two Write instructions are given in 
sequence, then the execution of the second one will 
be interlocked until the first one is completed. 
Buffering will have saved nothing on the first in­
struction. Therefore, whenever possible, we try to 
space out the printing operation so that a computer 
will be interlocked as little as possible. 

In the 1401, with its capability of buffering only 
one operation, the planning requirements are not 

really severe. Even if the programmer gives no 
special thought to buffering and simply puts his 
VV rite instructions wherever he would put them if 
the machine did not have print storage, the feature 
will save a certain amount of time, although it may 
not be used to full advantage. In some of the 
larger computers, however, where all input and out­
put operations are buffered, the effective use of 
the complete computing system requires very ex­
tensive programming systems to attempt to keep 
all of its components in operation as much of the 
time as possible. These input and output packages 
are prepared by a special programming group and 
are then utilized by all other programmers. 

REVIEW QUESTIONS 

1. Buffering can be described as a way of matching 
the speed of electronic storage with the' much slower 
speeds of input and output devices. How does buffering 
save time? 

2. Why does buffering not save much of the total 
percentage of job time when processing already takes 
much longer than input and output? 

7.5 Program Timing 

It is frequently necessary to estimate the amount 
of time that a program will require. Obtaining an 
accurate estimate of this sort requires a number of 
pieces of information and careful consideration of 
a variety of factors that affect the total time to 
execute the program. 

The basic idea is simply to take the total time 
required for input and output, add to it the total 
time required for the execution of internal process­
ing instructions, and subtract the amount of any 
overlapping of input and output with processing. 
Doing this requires, first of all, estimates of the 
total amount of input and output, together with 
timing information on these operations. This much 
is fairly simple, provided that the volume estimates 
are reasonably accurate. 

The timing of the internal processing operations 
is a little more difficult. The time required to exe­
cute each instruction is fairly readily obtained from 
the programming manuals. This information has 
been shown for the 1401 in the summary boxes 
throughout this manual and is descri~ed shortly. 
This, however, is not the end of the estimating job. 
Complexity is added by the fact that most programs 
have alternative paths that may be followed for 



different conditions existing in the input. Often 
these paths are not the same length so that the total 
time must be derived from a weighted average based 
on the expected fraction of the time that each of 
the paths is followed. And this must be a weighted 
average. If the normal path for processing infor­
mation on a card takes 40 ms, whereas in special 
cases arising only 2 per cent of the time the process­
ing takes only 10 ms, then one gets a very mislead­
ing picture of the total time if the average time for 
processing one card is taken to be 25 ms. This is 
one source of complexity. 

A second and more serious complication is the 
fact that processing is often partly overlapped with 
input and output. Related to this problem are other 
considerations; for example the card reading cycle 
in the 1401 can begin only at specified times. It 
can also very easily happen that the processing for 
some types of data will be completely overlapped 
with input-output, whereas the processing of other 
data that takes longer will be only partly over­
la pped. This can lead to erroneous estimates if the 
"variable overlapping" is not taken into account. 

For instance, an average processing time may be 
short enough to allow complete overlapping, but 
this sort of "average" is very misleading. The time 
"lost" on the longer-than-average processing cases 
is not offset by the shorter-than-average cases be­
cause once the processing is completely overlapped 
there is no more time to save. 

This is not the place to enter into a complete and 
detailed explanation of how to handle all these con­
siderations, since the subject depends too strongly 
on the features of the particular computer being 
used. We shall have to be content with the .obser­
vation that if high accuracy of time estimates is 
required, then extreme care must be exercised in 
making the time estimate. Carelessly made time 
estimates are notoriously inaccurate. 

We may close this very brief consideration of 
time estimating by mentioning the 1401 timing 
formulas given in the summary boxes for the vari­
ous instructions. 

The timing of the IBM 1401 is described in terms 
of one complete core storage cycle, which is 11.5 p's 
(microseconds, or millionths of a second) or 0.0115 
ms (milliseconds, or thousandths of a second). The 
time required for any internal processing instruction 
is always a multiple of this interval of time. The 
timing formulas are given in terms of certain char­
acteristics of the instruction under consideration 
and of the data fields being operated on. The 

MISCELLANEOUS OPERATIONS 99 

symbols used for these variables are shown in 
Figure 7.7. 

For an example of the application of these formu­
las, consider the equation for the Move Characters 
to A or B Word Mark, which is 

T = 0.0115 (LI + 1 + 2 Lw)ms 

Looking at Figure 7.7, we see that LI stands for the 
length of the instruction and Lw stands for the 
length of whichever data field is shorter. A Move 
instruction without chaining has seven characters. 
Suppose that we are moving a field of 11 characters. 
The total time is therefore 

0.0115 (7 + 1 + 2·11)ms = 0.345 ms 

\Ve may note in passing how these storage cycles 
are used. It clearly takes one cycle to get each 
instruction character from storage to the control 
registers and one extra to get the operation code of 
the next instruction and recognize its word mark. 
This is the basis of the LI + 1 in the formula. 

The movement of each character of the data 
field takes two storage cycles: one to get it from 
the A-field and one to place it in the B-field. Thus 
the number of cycles spent in data movement is 
twice the number of characters moved, which in 

SYSTEM TIMINGS 

Key to abbreviations used in formulas 

LA = Length of the A-field 
LB = Length of the B-field 
Lc = Length of Multiplicand field 
LI = Length of Instruction 
LM = Length of Multiplier field 
LQ = Length of Quotient field 
LR = Length of Divisor field 
Ls = Number of significant digits in Divisor (Excludes 

high-order O's and blanks) 
Lw = Length of A- or B-field, whichever is shorter 
Lx = Number of characters to be cleared 
Ly = Number of characters back to right-most "0" in 

control field 
Lz = Number of O's inserted in a field 
I/O = Timing for Input or Output cycle 
F m = Forms movement times. Allow 20 ms for first 

space, plus 5 ms for each additional space 
Tm = Tape movement times 
~ = Number of fields included in an operation 

Figure 7.7. Abbreviations used in instruction timing formulas. 



100 IBM 1401 PROGRAMMING 

turn is the number of characters in the shorter field, 
in the Mew instruction. 

The formulas for most of the instructions are 
equally simple. A few of the more complex in­
structions have correspondingly complex formulas. 
Multiplication, for instance, is a fairly long instruc­
tion and furthermore depends not only on the 
length of the field but also on what the digits in 
the field are. The formula that is shown is fairly 
complex and at that gives only an average. How­
ever, in most cases the computation of the time 
required for the instruction is not at all difficult. 

It will be noted that the input and output instruc­
tions show the time in two parts. One part gives 
the time required in the central computer, to which 
must be added the time taken up in the actual input 
or output actions. The time for these actions can­
not be given as fixed numbers because of such varia­
bles as the restricted number of points at which a 
card-reading or card-punching cycle can begin and 
the fact that the effective time of these operations 
depends on whether the processing time can be used 
for processing or whether the prog,ram is organized 
so that the computer will be interlocked during 
part of the processing time. Therefore, as we have 
noted, the estimation of input and output operations 
depends not only on the way the computer is built 
but also very strongly on the way the program is 
organized. 

7.6 Subroutines and Utility Programs 

A subroutine is a group of instructions that per­
forms some well defined segment of a data process­
ing operation. Subroutines are of two broad types 
and are used for two rather different reasons. 

One frequent reason is that someone else has al­
ready written it and it can, therefore, be incorpo­
rated in a program with little effort. For instance, 
in the basic 1401 there is no multiply instruction. 
It is not unduly difficult to program multiplication, 
but it takes more effort than a programmer wants 
to expend every time he has to multiply. Fortu­
nately, there is no need for him to do so: routines 
are already available for the purpose. All that the 
programmer has to do is to obtain the cards on 
which the subroutine is punched and insert them in 
his program deck before assembly. Knowing that 
after assembly his object program will contain the 
multiply subroutine, he can write instructions in 
his program to use the subroutine without having 

to spend any time in programming the multiplica­
tion. 

If mUltiplication is required only once or twice 
in a program, it is satisfactory to insert the sub­
routine right where it is needed in the program. 
The only extra operations required are those neces­
sary to place the multiplier and multiplicand in 
standard locations where the subroutine can find 
them and to retrieve the product from a standard 
location where the subroutine puts it. Since the 
subroutine falls right in the sequence of instruction 
execution, there is obviously no need to branch to 
it. This is the essence of the open subroutine­
that is, it is inserterl in the main program where it 
is needed and appears in the program as many 
times as it is needed. 

Suppose, on the other hand, that multiplication 
is required at a dozen different places in a program. 
N ow we begin to worry about the storage space 
that is wasted by having the same subroutine at a 
dozen places in storage. Why not put it in just 
once and then branch to it whenever a multiplica­
tion must be performed? Now we have a closed 
subroutine. To summarize, a closed subroutine is 
placed in storage at one place; whenever the sub­
routine is needed, the main program branches to 
it, and the subroutine branches back to the main 
program when it is finished. 

This does create one new problem: how does the 
subroutine know where to return when it is finished? 
This question is answered by a linkage. Before 
branching to the subroutine, one or two instructions 
in the main program store an address that the sub­
routine can use to compute the address to which it 
should return when it is finished. In most com­
puters there is a special instruction that facilitates 
this storage of the return address. In the 1401 there 
is an optional instruction called Store B Address 
Register, which, in conjunction with a special aspect 
of the 1401 Address Registers, makes it a simple 
matter to obtain the address of the next instruction 
after a Branch. The first instruction of the sub­
routine can store this Branch instruction at the end 
of the subroutine. No matter where the subroutine 
was entered from, therefore, the subroutine will 
return to the next instruction after that. In the 
absence of this special feature, it is not difficult to 
do essentially the same thing with standard instruc­
tions. 

We see now the contrast between an open sub­
routine, which is inserted where needed and as 
many times as needed, and a closed subroutine, 
which is inserted in the program once and to which 



the main program branches whenever it is needed. 
Subroutines are used for two reasons: to save the 
trouble of writing routines that are already avail­
able (this applies to both open and closed sub­
routines) and to save storage space (this applies 
only to closed subroutines). 

There is available for most computers a group of 
routines that come into this area of discussion, al­
though they are not set up as subroutines. Ex­
amples are programs to load cards, clear storage, 
and print out specified areas of storage for help in 
program checkout. For machines where the pri­
mary input is through punched cards, these routines 
are prepared on small decks that are readily ac­
cessible at the computer. At least a few of them 
will generally find use in virtually every program 
that is run on the machine. The name utility 
routines is applied to a broad category of programs 
of this type. 

In the case of the 1401, there are three heavily 
used utility programs to illustrate this concept. 
The clear storage program is a two-card routine 
that clears all storage to blanks, removes all word 
marks, and then sets a word mark in location 00l. 
It is typically placed at the front of every program 
loaded into storage to insure that each will begin 
with a clean slate. It is therefore unnecessary for 
each programmer to write clear storage instructions 
at the beginning of his program. The card loader 
is also a two-card routine. It will accept cards of 
the type produced by the SPS assembly program 
and load the instructions or constants punched on 
them into the specified locations in storage. The 
program also sets all word marks required by the 
instructions or constants. Finally, the card loader 
recognizes the card in the object deck produced by 
the END card in the SPS assembly and branches 
to the location in the object program specified by 
this card. 

A complete object program deck is typically or-
ganized as follows: 

Clear Storage 
Card Loader 
Object Program Deck 
Transition Card (produced from END card) 
Data Cards 

The loading of the entire program is accomplished 
by pushing the load button on the 1401 console. 
This button automatically causes a word mark to 
be set in 001, the first card to be read into the read 
storage area, and the instruction at 001 to be exe­
cuted. The clear storage routine is set up on its 

MISCELLANEOUS OPERATIONS 101 

two cards so that these actions will enable it to get 
started properly. From this point on, all card read­
ing is initiated by instructions in the two utility 
programs and later in the object program. Thus 
the clear storage routine loads the card loader 
program after having cleared all of storage. The 
card loader program loads the Object Program deck. 
'Vhen the transition card is read, the loader pro­
gram causes a branch to the object program which 
then reads and processes data cards. 

The last utility program that we consider is one 
that prints a specified area of storage. This is 
typically used in checking out a new program when 
it is desired to see what the storage contents are 
after attempting to run it. The programmer 
punches on a control card the beginning and ending 
addresses of the region of storage that he wants 
printed. This control card is added at the end of 
the print storage deck and the deck is loaded. (It 
is, of course, impossible to print that part of storage 
used by the print storage program itself, but this is 
a matter of only 146 locations and these locations 
may be selected to be anywhere in storage.) The 
print storage program then prints out the contents 
of the specified storage locations, using an extra 
printing line to print l's underneath the characters 
in which word marks are set. The whole opera­
tional sequence of punching a control card, loading 
the print storage deck and printing out the contents 
of all storage can be done in a matter of a few 
minutes, giving extremely valuable data for use in 
determining whether the program is operating cor­
rectly and in establishing what is wrong with it if 
it is not. 

EXERCISES 

*1. The following fields are in storage: 

Field Symbol Length Sample 

Date DATE 5 05 22 1 
Month Day Year 

Account 
Number ACCT 7 0078405 

State STATE 4 OREG 
Amount due DUE 7 0164329 

These fields are to be printed as shown in the following 
sample: 

bb78405 
1-7 

OREG 
11-14 

b5 22 1 
18-19 21-22 24 

b 1, 643.29 
28-36 

The four fields have word marks in their high-order 
positions only. 



102 IBM 1401 PROGRAMMING 

2. The fields in Table 7.3 are in storage. These fields 
are to be printed as shown in the following sample: 

RbBbJOHNSONbbbbbbbbbbbbb 
1-24 

535-22-1583 
28-38 

$861.89 
42-49 

W rite a program segment to set up this printing line. 
The three fields in storage have word marks in their 
high-order positions only. 

*3. A deck of cards contains, among other things, an 
account number in columns 1 to 5 and a dollar amount 
in 23 to 28. The deck is in sequence on account number, 
and there are never more than 40 cards with the same 
account number. All the cards for one account number 
are to be printed on a separate page. The account num­
ber should be printed with zero suppression in positions 
1 to 5, and the amount with a decimal point and zero 
suppression in 10 to 16. When all the cards for one 
account have been printed, a line should be skipped and 
the dollar total for the account printed with a decimal 
point and zero suppression in 8 to 16. 

Draw a block diagram and write a program. 
4. Two fields from each card in a deck are to be 

printed. Columns 1 to 7 contain an account number 
that is to be printed in positions 1 to 7 with zero sup­
pression. Columns 8 to 14 contain a dollar amount that 
is to be printed in positions 11 to 20 with dollar sign, 
comma, decimal point, and zero suppression. A heading 
is to be printed at the top of each page, consisting of 
ACCOUNT in 1 to 7 and AMOUNT in 13 to 18. After 
40 body lines a line is to be skipped and the total of all 
the amounts on the page printed in edited form in 9 
to 20. When the last card is detected, print the total for 
the partial page and skip to the top of the next page. 
Draw a block diagram and write a program. Use either 

a line counter or a page overflow punch in channel 12 to 
detect the end of each page. Hint. Be sure your pro­
gram does not fall apart if the last page contains exactly 
40 lines. 

5. Compare the total input and output time, and the 
time available for processing, for 

a. reading a card, punching a card, and then printing 
a line (without read release, punch release, or print 
storage) ; 

b. executing the Write, Read, and Punch instruction 
(without read release, punch release, or print stor­
age); 

c. executing the Write, Read, and Punch instruction 
(without read and punch release but with print 
storage) ; 

6. Estimate the time required to execute the program 
in Figure 3.2, exclusive of reading and printing. 

7. Estimate the time required to execute the program 
in Figure 4.1: 

a. once, exclusive of reading and printing; 
b. for 100 cards, including reading and printing (with­

out print storage) ; 
c. for 100 cards, including reading and printing (with 

print storage). 

* 8. Estimate the time required to execute the program 
of Figure 5.3 for a deck of 10,000 cards including reading 
and printing (without print storage). Assume five cards 
per group. Hint. You might begin by deciding whether 
it is worth worrying about the time for housekeeping or 
about the alternative paths in the program, since they 
mayor may not have any significant effect on total time. 
An estimate within 5 per cent is pretty good. 

9. Estimate the time required to execute the program 
of Figure 6.4 for a deck of 2000 cards (with print stor­
age). See hint in Exercise 8. 

TABLE 7.3 

Field 

Name with two initials at right 
Social security number 
Amount 

Symbol 

NAME 
SS 
AMNT 

Length 

22 
9 
6 

Sample 

JOHNSONbbbbbbbbbbbbbRB 
535221583 

86189 



8. MAGNETIC TAPE OPERATIONS 

Magnetic tape provides compact storage 
for much larger amounts of information than 
can be contained in core storage and allows 
for much faster reading and writing than 
with punched cards. Magnetic tape storage 
is available for virtually all large computers 
and can be installed on the IBM 1401. When 
the 1401 is used as a medium-sized computer 
by itself, magnetic tape provides large­
capacity storage for files and input data. 
When the system is used as an auxiliary ma­
chine with a larger computer, magnetic tape 
is employed as a communication device be­
tween the larger machine and punch card 
input or printed output. The following dis­
cussion of the physical characteristics of 
magnetic tape is applicable to all IBM ma­
chines. 

8.1 Physical Characteristics of 
Magnetic Tapes 

Magnetic tape is wound on a 10Y2-in. 
diameter reel. The tape itself is Y2 in. wide 
and 2400 ft long. It is coated with a mag­
netic oxide material on which information 
can be recorded in the form of magnetized 
areas. One reel of tape can contain as many 
as 16 million characters; the actual number 
depends on how the information on the tape 
is organized. 

Each character on the tape is recorded in 
a seven-bit code very similar to that used 
within the computer. Characters are re­
corded in groups called blocks. A block may 
contain any number of characters. Blocks 
are separated from each other by about % 
in. of blank unrecorded tape called an inter-

record gap. (The word block and record are 
occasionally used as synonyms; in this sec­
tion we shall attempt to maintain a distinc­
tion between a physical block on the tape 
and the one or more problem records that 
may be contained in the block. Certain 
usages are so firmly entrenched, however, 
that we cannot be completely consistent on 
this point.) 

Each tape character is composed of an 
even number of ones; this is contrasted with 
the representation within the computer in 
which each character has an odd number of 
ones. This difference is necessary to main­
tain compatibility with tapes from some of 
the large IBM computers. 

The tape codes for the characters used in 
the 1401 are shown in Figure 8.1. It is neces­
sary to qualify this statement as applying 
specifically to the 1401 because a number of 
special control characters shown at the right 
of Figure 8.1 do not apply to all IBM ma­
chines. The coding of the standard charac­
ters is the same in all, however. 

In Figure 8.1 the seven-bit vertical group­
ings are the characters. We speak of the 
horizontal groupings, containing one bit from 
each character in the block, as being hori­
zontal rows or, sometimes, channels. Rows 
are named in the same way as the seven bits 
of the character within the computer; that is, 
CBA 8421. 

The reading and writing of information 
with magnetic tape is subject to a considera­
ble amount of built-in checking in IBM tape 
systems. First, there is parity checking of 
each character. As each character is written 
onto tape, the parity bit is computed to make 
the total number of ones in the character 

103 



104 IBM 1401 PROGRAMMING 

representation even. When the tape is read later, 
the number of ones in each character read from tape 
is checked to make sure that it is even. If it is 
even, we have a certain amount of assurance that 
the character was written and read correctly. To 
provide further confidence in the accuracy of the 
tape operations, a parity check is made on the 
number of ones in each horizontal row of each 
block; as the block is written a count is maintained 
of the number of ones in each row of the block. 
After the last character has been written, another 
character, called the horizontal check character, is 
recorded. This contains in each bit position either 
a one or a zero, whichever is necessary to make the 
total number of ones in that row even. This hori­
zontal check character is provided automatically 
by the computer circuitry and need be given no at­
tention by the programmer. When the tape block 
is read, a count is made of the number of ones in 
each channel of the entire block, including the check 
character. If the number of ones in each channel 
is found to be even, we have further assurance that 
the tape operation is correct. The check character 
does not enter storage. 

A third form of checking, called relative sensi­
tivity level sensing, provides further assurance of 
accuracy of tape reading and writing. The engi­
neering details are not of concern to us here. 

These checking features are designed to detect 
errors of two rather different types. One type is 
actual malfunction of the electronic and mechanical 
equipment. In modern computers such troubles 
are not frequent. The other source of tape errors is 
the tape itself. The quality standards imposed on 
the manufacture of the tape by the computer must 
be extremely rigid, since the slightest imperfection 
can cause a character to be recorded incorrectly. 
Furthermore, dust particles can cause a weak signal 

CODES 

to be recorded, and simple mechanical wear of the 
oxide coating can cause the quality of the recorded 
signal to deteriorate. Great pains are taken to 
minimize troubles caused by the tape itself: the 
manufacture of the tape is subject to stringent in­
spection, great care is taken in a well run installa­
tion to avoid dust and dirt on the tape, and the tape 
units are designed to cause as little wear of the 
oxide as possible. 

'Vhen a section of tape becomes damaged or 
worn, it is common practice to cut out the bad part, 
leaving two shorter tapes. This is no inconvenience, 
since there is frequent need for tapes shorter than 
the maximum reel length. Even a full length tape 
is shortened in use: since the beginning of the tape 
gets the most wear, by being handled in mounting 
the reel, the first 20 ft or so is cut off from time to 
time. (This of course is done at a time in the usage 
of the tape when no valid information is recorded 
on the tape!) 

The various automatic checks are made only 
when the tape is read. If anything should turn out 
to be wrong with the information recorded on tape, 
no indication of the fact will appear until the tape 
is read. If the detection of the error were post­
poned until the tape is used in the next processing 
cycle, it would be moderately inconvenient to re­
construct the correct information. It is much more 
desirable to know about the difficulty immediately 
after the tape is written, while the information is 
still in core storage ready to be rewritten. 

This immediate checking is provided in the tapes 
used on the 1401 by the two-gap head. The term 
"head" is used to describe the assembly of coils and 
magnetic pole pieces that reads or writes informa­
tion on a tape. In many computers a single head 
is used both for reading and for writing. In the 
IBM 729 and 7330 tape units there is one head for 

01 234 56 789 ABC D E F GH I J K L MNO PQ R STU VW x Y Z & 0-$ * / , 0 -
C 
B 
A 
8 

" 2 

• 

• 

• • 

• • 
• • 

• • • 

• • 
• • • • 

• • 
• • • 

• • • • • 
• • • • • • • • • • 
• • II • • • • • • 

• • 
• • • • 

• • • • 
• • • • • • 

• • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • 
• • • • • • • • • • • • • • • • • • • 

• • • • • • • • • • • • • • • • • • 
Figure 8.1. IBM 1401 tape character codes. 



reading and a separate one for writing. The writing 
head is positioned in front of the reading head, in 
the sense of the direction of tape motion. Thus, 
when a character is written, it is automatically read 
a very short time later by the read head to deter­
mine that the information has been recorded reada­
bly on tape and that parity counts are correct. If 
there should happen to be something wrong with 
the tape or with the tape unit, then it is a fairly 
simple matter to correct the difficulty since the in­
formation is still available in core storage. 

Magnetic tape is written and read in a tape unit, 
of which three types may be used with the 1401: 
the 7330, the 729 Model II, and the 729 Model IV. 
The number of tape units attached to a computer 
is variable at the discretion of the user; in this 
book we assume a machine with four. 

The difference between the three tape units that 
can be used with the 1401 is in the speed at which 
the tape moves. In all three there may be either 
200 or 556 characters per inch of tape, depending 
on the setting of a switch on the tape unit. In the 
729 IV, the tape moves at 112.5 in. per sec making 
the transfer rate either 22,500 or 62,500 characters 
per sec. The corresponding figures for the 729 II 
are 75 in. per sec and either 15,000 or 41,667 char­
acters per sec, and for the 7330 they are 36 in. per 
sec and either 7200 or 20,016 characters per sec. 
These performance characteristics are summarized 
in Figure 8.2. 

In figuring the time required to read or write a 
tape block, we must consider not only the time to 
transfer the characters in the blocks but also the 
time required to accelerate the tape to full speed 
before reading or writing. This start/stop time 
turns out to be about the same as the time required 
to read past the interrecord gap at full speed. 

The total time required to read a tape depends 

Density, characters per inch 
Tape Speed, inches per second 
Inter-Record Gap, inches 
Start/Stop Time, Read/Write 

Operation, milliseconds 
Character Rate, characters 

per second or 
Rewind Time, full 

. reel, minutes or 

MAGNETIC TAPE OPERATIONS 105 

on the fraction of the time the tape is kept in 
motion. The average character transfer rate de­
pends not only on this figure but on the size of 
the blocks, bearing in mind that there is about % 
in. of blank tape between one block and the next. 
On the 729 tapes at low density, for instance, % 
in. of tape will hold 150 characters. If the blocks 
are smaller than this size, we see that less than 
half the tape contains information. Therefore, even 
if the tape were kept moving all the time, the 
average character transfer rate would be only half 
the rate at which they are transferred during the 
reading or writing of a block. We shall see later 
that this consideration has a significant influence 
on the programming techniques used with magnetic 
tapes. 

It is necessary to be able to detect the beginning 
and the ending of the tape, both for design reasons 
in the magnetic tape unit itself and because of 
programming considerations. For this purpose, re­
flective spots, also referred to as photo-sensing 
markers, are placed on the tape to enable the tape 
unit to sense where reading and writing are to begin 
and to stop. The reflective spot at the front end 
of the tape is called the load point. Appropriate 
button pushing on the tape unit when the tape is 
loaded will cause the tape to be positioned just be­
yond the load point. The reflective spot near the 
end of the tape is employed when writing to indi­
cate that the physical end of the tape is about to 
be reached and that no further information should 
be written. Detection of the end-of-reel reflective 
spot during writing turns on an indicator in the 
computer. 

When the end-of-reel spot is detected during a 
writing operation, we ordinarily write a final block 
on the tape consisting simply of a tape mark. This 
is a special character that will later be detectable 

7330 729-II 729-IV 

200 or 556 200 or 556 200 or 556 
36 75 112.5 
~ ~ ~ 

varies 10.8 7.3 

7,200 15,000 22,500 
20,016 or 41,667 or 62,500 

13.3 1.2 0.9 
2.2 

Figure 8.2. Summary of magnetic tape characterstics. 



106 IBM 1401 PROGRAMMING 

upon reading to signal the end of the tape by turn­
ing on the same end-of-reel indicator that is turned 
on by the reflective spot when writing. The tape­
mark technique of denoting the end of the tape is 
used for two reasons. First, the tape unit does not 
turn on the end-of-reel indicator when the reflec­
tive spot is detected on reading; we must therefore 
have some other technique for detection of this 
condition. The second reason is that we sometimes 
wish to put on tape an indication that no more 
information follows, even though the end of the 
physical tape has not been reached. The tape 
mark provides this capability. 

Since the complete collection of valid data blocks 
is frequently called a file, the tape mark is also 
sometimes called an end-of-file mark. We prefer 
here, however, to reserve the word file for the mean­
ing in which it was used in Chapter 1, in order to 
make a clear distinction between a tape reel and 
a file of information, which may consist of only a 
few blocks, a complete tape, or many tapes. 

Each tape reel is provided with a removable 
plastic ring on the back side, that is, the side near­
est the tape unit. This is called the file protection 
ring. It is not possible to write on a tape unless 
this ring is inserted in the tape reel. This feature 
is provided as a precaution against accidental 
destruction of permanent master files. The usual 
procedure is to remove the file protection rings from 
such master tapes after they have been initially 
written and then require the authorization of some 
responsible member of the organization before the 
file protection ring can be inserted in any tape reel. 

Most people have at least slight difficulty in re­
membering whether the tape is protected by in­
serting or removing the file protection ring. We 
suggest the mnemonic phrase "no-ring-no-write." 

REVIEW QUESTIONS 

1. Outline the built-in error checking in IBM magnetic 
tape systems. 

2. What is the maximum number of characters that 
can be written on a 2400 ft reel of tape at low density? 
At high density? Why would a reel never contain so 
many characters? 

3. What is the purpose of the file protection ring? 

8.2 Magnetic Tape Instructions 

The operation of magnetic tapes in a computer 
system is controlled by the execution of suitable 

instructions, as is everything else. We shall look 
into the tape instructions in the 1401 briefly in order 
to get a general idea of what the basic machine in­
structions are and what they do. We shall see in 
Section 8.3, however, that tape operations are sel­
dom actually set up this way in normal program­
ming; instead macro-instructions are used, which 
greatly simplify tape programming. For now, 
therefore, we wish merely to survey the actual ma­
chine instructions in order to understand better 
what the macro-instructions do. 

Tapes are most commonly written and read in 
the 1401 with two instructions called Write Tape 
and Read Tape. The operation code for both in­
structions is M, which is also the operation code 
for Move; we therefore use the mnemonic operation 
code MCW. However, both instructions require a 
d-character, and the net result is that we have two 
entirely new instructions that are essentially un­
related to a Move. For reading tape the d-char­
acter must be R and for writing it must be W. 

To write a block on tape in the 1401, we must 
specify three items of information to the computer. 

1. Which of the tape units is to receive the block? 
This is specified by the A-address of the instruction, 
which must be of the form 70 Ux, where x is the 
number of one of the tape units attached to the 
system. The per cent sign and the U are required 
by the design of the system to specify magnetic 
tape. The numbers of the tape units may be set by 
a dial on each tape unit. An installation with five 
magnetic tapes, for instance, would most likely 
establish the convention that the tape units are 
dialed so as to run through the numbers 1 to 5. 

2. Where in storage is the first character of the 
block to be written? This is answered by the B­
address of the tape instruction, which specifies in 
regular three-character form the high-order charac­
ter position of the first character. Note carefully 
that characters in a block are read from succes­
sively higher numbered locations. 

3. What is the length of the block to be written? 
This question is answered by placing in core storage, 
after the last character of the block, a special sym­
bol called a group mark with a word mark. The 
group mark consists of all ones in the zone and 
numerical portions of the character. When a group 
mark with word mark is detected in core storage 
during writing, the writing operation stops without 
having written the group mark with word mark on 
tape. 



The actions on reading a tape are very similar, 
except that the operation is ended in a slightly dif­
ferent way. The operation code is M, the A-address 
is % Ux where x specifies a tape number, the B-ad­
dress is the address of the first position into which 
a character should be read from the tape block, and 
the d-character is R. The operation is stopped by 
the occurrence of either of two things. If the inter­
record gap is sensed in reading the tape, then a 
group mark is inserted in core storage following the 
last character of the block and the operation is 
stopped. If, on the other hand, a group mark with 
word mark is sensed in storage before reaching the 
end of the tape block, then the transmission of 
characters is stopped immediately, although the 
tape does move past any remaining characters on 
the tape until it reaches an interrecord gap. 

Write Tape 

FORMAT 

MAGNETIC TAPE OPERATIONS 107 

Five somewhat related instructions for controlling 
the action of the tape unit without transmitting 
information complete the repertoire of tape instruc­
tions. All of the five instructions have the actual 
operation code U and the mnemonic CU, for Control 
Unit. They are distinguished by their d-characters. 

The Back Space Tape instruction (d-character: 
B) causes the tape unit specified in the A-address 
to move backwards over one tape block. The first 
interrecord gap encountered in the backward direc­
tion stops the operation. 

The Write Tape Mark (d-character: M) causes 
a tape mark to be recorded immediately following 
the last block on tape to indicate whatever the pro­
grammer wants it to indicate. Most commonly it 
denotes the end of valid information on the tape 
and/or that the physical end of the tape is about 

Mnemonic 

MCW 

Op Code 

M 

A-address 

%Ux 

B-address d-character 

xxx W 

FUNCTION The tape unit designated in the A-address is started. The d-character specifies a tape write 
operation. The data from core storage is written in the tape record. The B-address specifies the high-order 
position of the record in storage. A group mark with a word mark in core storage stops the operation. The 
group mark with a word mark causes an interrecord gap to be created. 

WORD MARKS Not affected. 

TIMING T = 0.0115 (LI + l)ms + TM 

Read Tape 

FORMAT 

Mnemonic 

MCW 

Op Code 

M 

A-address 

%Ux 

B-address 

xxx 

d-character 

R 

FUNCTION The tape unit specified in the A-address is started. The d-character specifies a tape read 
operation. The B-address specifies the high-order position of the tape read-in area of storage. The machine 
begins to read magnetic tape, and continues to read until either an interrecord gap in the tape record or a 
group mark with a word mark in core storage is sensed. The interrecord gap indicates the end of the tape 
record and a group mark (code CBA 8421) is inserted in 1401 core storage at this point. 

WORD MARKS Not affected. 

TIMING T = 0.0115 (LI + l)ms + T M • Time varies for type of tape unit and tape density used (see 
Figure 8.2). 



108 IBM 1401 PROGRAMMING 

to be reached. It is, therefore, sometimes called 
the end-of-reel indicator, but it can be used for 
several other purposes. The tape mark has zone 
bits of 00 and numerical bits of 1111. When a tape 
mark is later encountered in reading the tape, the 
end-of-reel indicator in the computer is turned on; 
it may be tested with a Branch If Indicator On 
instruction. It should be carefully noted that the 
Write Tape Mark instruction creates a separate 
block preceded by an interrecord gap. Thus, when 
the tape is read, the tape mark is not detected by 
reading the last block before the tape mark. It is 
detected only by reading the block that contains 
the tape mark. Therefure, after every Read Tape 
instruction there should ordinarily be a Branch If 
Indicator On instruction to determine whether data 
was read or the tape mark encountered. It should 
also be noted carefully that there is only the one 
indicator for this purpose in the entire system. 
Therefore, the Branch If Indicator On instruction 
will always test whether a tape mark was detected 

Backspace Tape 

FORMAT 

Mnemonic 

CU 

Op Code 

U 

on the tape most recently read. It is not possible 
to read from two tape units and then use a Branch 
If Indicator On instruction to determine whether 
there was a tape mark on the first one. The indi­
cator is turned off by selecting a new tape unit or 
by testing it. 

The Skip and Blank Tape instruction (d-charac­
ter: E) is used to erase about 3% in. of tape. It 
is used when repeated attempts to write on an area 
of tape have shown that a readable tape record can­
not be written there. By erasing the bad area of 
tape, we get the effect of an unusually long inter­
record gap. The idea is that the bad section of 
tape may be limited to one small area and that 
tape farther along may be usable. 

The Rewind Tape instruction (d-character: R) 
causes the selected tape unit to rewind its tape to 
the load point. If there is less than about 400 ft 
of tape to be rewound, the tape simply moves back­
ward past the heads. In the 729 units, if there is 
more than about 400 ft, the heads are raised, the 

A-address 

%Ux 

d-character 

B 

FUNCTION The tape unit specified in the A-address backspaces over one tape record. The first inter­
record gap encountered stops the operation. 

WORD MARKS Not affected. 

TIMING T = 0.0115 (LI + l)ms + TM: 

Write Tape Mark 

FORMAT 

Mnemonic 

CU 

Op Code 

U 

A-address 

%Ux 

d-character 

M 

FUNCTION This instruction causes a special character (8421) to be recorded immediately following the 
last record on tape to indicate an end-of-reel condition. When the tape mark is read back from a tape, the 
end-of-reel indicator is turned on. This signals the 1401 program that the end of the utilized tape has been 
reached. 

WORD MARKS Not affected. 

TIMING T = 0.0115 (LI + l)ms + TM: 



tape is lifted out of the vacuum columns, and the 
rewinding is done at a much higher speed. The 
total time to rewind the tape does not exceed the 
figure shown in Figure 8.2 for each tape unit, re­
gardless of how much tape there is on the takeup 

Skip and Blank Tape 

FORMAT 

Mnemonic 

CU 

Op Code 

U 

MAGNETIC TAPE OPERATIONS 109 

reel: the more tape there is, the faster the high 
speed rewind goes. Processing may continue during 
the rewinding. 

The Rewind Tape and Unload (d-character: U) 
performs the same functions as the Rewind, but in 

A-address 

%Ux 

d-character 

E 

FUNCTION The tape unit designated by the A-address spaces forward and erases 3~:4: inches of tape. 
The actual skip occurs when the next Write Tape instruction is executed. 

WORD MARKS Not affected. 

TIMING T = 0.0115 eLI + l)ms. Processing can continue immediately after this operation. However, 
47 ms for IBM 729 II and 27 ms for IBM 729 IV must be added to the next Write Tape instruction time. 

Rewind Tape 

FORMAT 

Mnemonic 

CU 

Op Code 

U 

A-address 

%Ux 

d-character 

R 

FUNCTION The tape unit designated by the A-address is rewound to its load point. 

WORD MARKS Not affected. 

TIMING T = 0.0115 eLI + l)ms + 10 ms. Rewind time is 1.2 min per 2400-ft reel for the IBM 729 II, 
0.9 min for the IBM 729 IV, and either 13.3 or 2.2 min for the IBM 7330, but it is not calculated with pro­
gram time. Processing can continue approximately 10 ms after this instruction is interpreted. 

Rewind Tape and Unload 

FORMAT 

Mnemonic 

CU 

Op Code 

U 

A-address 

%Ux 

d-character 

u 
FUNCTION This instruction causes the tape unit specified in the A-address to rewind its tape. At the 
end of the rewind the tape is out of the vacuum columns and the reading mechanism is disengaged. The 
unit is effectively disconnected from the system and is not available again until the operator restores it to a 
ready status. 

WORD MARKS Not affected. 

TIMING T = 0.0115 eLI + l)ms + 10 ms. 



110 IBM 1401 PROGRAMMING 

Figure 8.3. Block diagram of a program to write the information 
from a deck of cards on!o magnetic tape. 

addition it makes it impossible for the computer to 
use that tape unit until a switch on the tape unit is 
manually depressed. This is ordinarily used when 
a tape-has been written that should be dismounted 
from the unit and a new tape mounted so that proc­
essing can continue with a new reel. Without this 
feature, there would be the constant danger that a 
recently written tape could be destroyed by writing 
new information on it, in the mistaken hope that 
the operator would have changed it by the time the 
new information was to be written. 

For an elementary example of the use of some of 
these instructions, consider the first part of a job 
that involves putting the information from a deck 
of cards onto tape. The tape, once written, might 

be used in later operations in the 1401 or it might 
be used as input to a larger computer. In order to 
illustrate the basic operations without unduly com­
plicating the logic, we shall consider an extremely 
simplified and somewhat unrealistic approach. 
Each card is simply written onto the tape on tape 
unit 1, exactly as it is read into storage, with one 
card in each tape block. 

The block diagram of this program is shown in 
Figure 8.3, and the program in Figure 8.4. We 
load a group mark with word mark as a constant 
into position 81, which is the next character position 
after the read area. At the beginning of the pro­
gram we read a card and immediately write the 
information onto tape 1. Next, a test is made to 
see whether the information written was readable 
when it passed the read head after writing. If it 
was, we test to determine whether the card just 
read was the last one. If it was not the last card, 
we branch back to read another card. If the tape 
was not readable, we write on the printer a short 
message to the operator that we ran into difficulty 
and halt. In actual practice, using the Input/Out­
put Control System, considerably more pains are 
taken to attempt to write the tape correctly and 
skip over the bad tape if it cannot be written in a 
few attempts. If the last-card test showed that the 
end of the deck had been reached, we write a tape 
mark, rewind the tape, print a message that the 
job is ended, and halt. This job-ended message is 
not too crucial here, since the operator would readily 
enough see that all the cards had been read,but it 
is good practice to be fairly free with such messages 
(or other signals) so that the operator need never 
be in doubt as to the status of the program. When 
appropriate, we also like to be able to write out 
messages specifying the action to take next. 

This example is obviously vastly oversimplified. 
We shall see in Section 8.3 that the same general 
task can be done much more simply by using the 
Input/Output Control System; in spite of the sim­
plification of the programming, the job will be done 
in a much more thorough fashion. 

REVIEW QUESTIONS 

1. How does the core storage addressing of informa­
tion to be read from tape or written on tape differ from 
other data addressing on the 1401 ? 

2. What are the two ways that tape reading may be 
stopped in the 1401? 

3. When is a tape mark detected? 



8.3 Tape Programming with Autocoder 
and IOCS 

The effective use of magnetic tapes in a data 
processing system requires consideration of many 
factors. If every programmer had to take all these 
factors into account himself, and then write the 
detailed program properly to handle them, a great 
deal of time would be wasted: the same problems 
face anyone who ever writes a tape program. For­
tunately, this is not the case; a standard tape pro­
gramming system is available. This package, 
called the 1401 Input/Output Control System, or 
IOCS, handles all of the normal input and output 
programming considerations with a minimum of 
programmer effort. 

IOCS is one of the maj or parts of an advanced 
coding language similar to SPS but considerably 
more powerful, called Autocoder. The basic ideas 
of Autocoder are generally the same as discussed 
in Chapter 4: symbolic addresses may be used in 
place of numerical addresses; mnemonic operation 
codes replace actual; the symbolic source program 
is translated into an actual object program by an 
assembly process. The maj or differences between 
SPS and Autocoder are these. 

1. A free-form coding sheet is used, which means 
here that there are no fixed fields for the operands. 
Instead, the programmer uses as much space as 

(A I OPERANC 

LINE COUNT LABEL OPERATION CHAR. ~ ADDRESS 

MAGNETIC TAPE OPERATIONS 111 

required for each operand and separates the oper­
ands by commas if there is more than one. 

2. Augmented mnemonic operation codes are 
used. This relieves the programmer of writing the 
d-character in most instructions and, for instance, 
makes it unnecessary to write the % U in the A­
address of a tape instruction. A complete list of 
Autocoder mnemonics appears· in Appendix 2. 

3. It is possible to use literals ; that is, instead of 
writing the address of a constant in an instruction, 
we may write the constant itself. The Autocoder 
processor assigns a location to the constant and 
fills in the assigned address in the instruction. 

4. Macro-instructions are provided. We are con­
cerned here only with the IOCS macros, with which 
the programmer can specify in a very condensed 
form the tape operations that he wants to perform; 
the processor translates these into routines of dozens 
or hundreds of instructions. In short, one instruc­
tion in the source program is translated into many 
actual machine instructions; this characteristic 
makes Autocoder a compiler rather than an assem­
bler as SPS is. 

Autocoder also provides the programmer with the 
flexibility of making up macros for the purposes of 
his program. Thus some frequently used group of 
instructions can be called for in writing the source 
program simply by writing the macro, which is a 
much simpler matter than writing all the instruc-

Page No. L......J of __ _ 
, 2 

(BI0PERAND 

g d 
ADDRESS 

CHAR. COMMENTS 

3 5 6 7 8 13 14 16 17 i;J ADJ. 
27 28 I~I ADJ. 

38 39 40 55 

5TA R T I 
0 , 0 R 

, , , , , , READ CA R IJ 
0 2 0 MC'W %UI I , 

000/ 
, 

W W,R,I,T,E, ,(j,N, LAP.E , I , 
o. 3 0 8 I ERR HI. T: 

, , 
L TA PE ER R ~R. ,r;, , I 

0 4 0 B I FIN ISH: I , A N,(j,. , , LAST .CARD ,Q 
0 5 0 8 I 57 ART I , , N,d , I , 
0 6 0 F IN ISH CUi % u / , I , 

M WR I 7--,-~..A.g£-,- MARK I , , 
CUi % U 1 

, , 
0 7 0 , , , 

R R E WJ..[/f..LD, 
o 8 L CIA M5SC,1 

, , j~:8 
, , -'-----'---"----'--

0 , I 0212 WRITE 
o 9 0 W I , , , I END MES~GE 
, o 0 H I J( :-:003 

ERRHLT L CiA MSSG2 I I 
, , , 

iRR--'----tI,R , , 0 ., I 021,9, WRITE , , 
, 2 0 W 

, , , 
HALT I , MESSAGE 

, 3 0 H I 
1 ~ 

, 
:003 , 

, 4 0 o / DC'W 008/ I :$ q,R,r/...,Ji,P, ,MA R K. , -'---'---...l.-___ -L.....L.... 

1 2 MGS 6/ D c'w -1( 
, 

:J,¢.B , 5 0 , F I Ii.LS.d!..,ff:D L-.l-.. 

o / 9 MS S () 2 
I- I--1--..L-1 

, 6 DC IW}I-
, :8 AD TAP E J:¢:8 "II , A L TED 

, 7 0 EN'D STAR,T, 
, , , , , , , L_ f- f---.L---1-L-l 

, , 
, 8 0 

I , , , , , , , , 
...D.-" 

, , , , , -

Figure 8.4. SPS program to write the information from a deck of cards onto magnetic tape. 



112 IBM 1401 PROGRAMMING 

tions themselves. Setting up a new macro is not 
appreciably more difficult than writing the detailed 
instructions to do the processing once; after that, 
all similar operations can be handled merely by 
writing the macro. 

Autocoder represents a significant advance in 
programming sophistication over BPS. We shall 
not attempt to give a complete description of all 
the features of the language. A summary of the 
10CS macros follows, and some of the other features 
are illustrated in the programs. 

The 10CS macros are of three types. The first, 
DIOCS (for Define 10CS), is used by the program­
mer to define the machine configuration on which 
the object program will run, along with certain gen­
eral information about the files and their processing. 
The second type, DTF (for Define Tape File), is 
used to describe in detail each of the files in a prob­
lem. The DIOCS and DTF are called declarative 
macros: they provide information to the Autocoder 
processor but do not result in any action in the 
object program. 

The next four macros, on the other hand, do cause 
action in the object program and are therefore 
called imperative macros. The OPEN, CLOSE, 
GET, and PUT macros lead to the creation of 
object program instructions that actually carry out 
the desired processing of file information. 

In order to see how these macros operate and to 
illustrate their use, we must investigate some of 
the considerations that affect tape programming. 

Record blocking. It is usually quite inefficient 
of tape space, and therefore of time, to make tape 
blocks as short as they would be with normal tape 
records. Thus in the program of Figure 8.4, if we 
were using a 729 tape at high densit~, the card 
characters would take up only about 20 per cent of 
the total tape space. All the rest would be inter­
record gaps. Therefore, it is common practice to 
write a number of what might be called "problem 
records" or "logical records" in one tape block. 
This is called tape blocking; the number of logical 
records in one tape block is called the blocking 
factor. In the special case where each block con­
sists of one logical record, as in the preceding ex­
ample, we speak of unblocked records or of a block­
ing factor of 1. 

Tape blocking is a virtual necessity if the com­
puter system is to be used effectively, but it does 
create certain programming problems. When a 
tape block is read, several problem records are 

brought into core storage. The processing instruc­
tions must be arranged to pick up the records in 
succession from the storage area into which the 
block was read. This deblocking can be handled 
by moving the records from the block input area 
to a working storage area as needed or by using an 
index register to select the records in succession 
from the block input area. 

In writing, the records must be assembled, or 
blocked, in the output area and then written when 
a complete block has been assembled. Once again, 
this can be done either with a working storage area 
or with an index register. 

Variable versus fixed length records. It fairly 
often happens that the amount of information in a 
tape record varies greatly from one record to an­
other, typically because a few of the file items re­
quire additional data not needed for the bulk of 
the file. For instance, a typical master record in 
an electric utility billing system contains a mini­
mum of 200 characters, an average of 300, and a 
maximum of 600. Most customers have only one 
meter, but some have two; bills are generally sent 
to the same address as the meter address-but not 
always; if a customer has two meters, they are 
generally at the same address-but not always. It 
is clear that if the master records were set up to 
contain the maximum information that could ever 
be necessary-the simplest approach-a great deal 
of tape space would be wasted in the large majority 
of the records, which require only half as much 
information. The same sort of thing happens in 
many other types of applications. 

A better choice is to let the length of the records 
vary according to the amount of information that 
must be recorded. Now, some means must be pro­
vided to indicate the length of each record; this is 
quite easily handled by placing in each record a 
number that specifies the total number of charac­
ters in the block. 

Block counts. It is often very useful to know 
precisely how many blocks there are on a tape. 
This block count can readily be generated as the 
tape is written and recorded as part of a separate 
block at the end of the tape. (This is the trailer 
label described below.) 

Record counts. It is also frequently useful to 
know how many records there are on the tape. 
This is usually not just the product of the number 
of blocks and the blocking factor because the num-



.... 

ber of records in the file may not be a multiple of 
the blocking factor. This count can also be gener­
ated by the program and written in the trailer block. 

Control totals. To provide a check on the ac­
curacy of programming and of machine operation, 
it is valuable to have in the trailer block the sum 
of some field in each record on the tape. This might 
be, for instance, the sum of the dollar amounts in 
all records. Such a control total can be accumu­
lated as the tape is written; when the same tape is 
later processed, the control total can be developed 
again and compared with the control total in the 
trailer. This gives a fairly strong assurance that 
all records were processed. (Failure to process a 
record or two under unusual circumstances is a sur­
prisingly common programming error.) 

The field summed actually need not have any 
meaning as a number by itself, as a dollar total 
ordinarily does. Forming the sum of all the account 
numbers, or all the city codes, or almost anything 
else, gives just about the same degree of checking. 
When a control total has no meaning in itself, it is 
called a hash total. 

Tape labels. Many computer installations have 
hundreds or even thousands of reels of tape, mak­
ing it crucial that there be no mixups in tape identi­
fication. Running a major job with the wrong 
input tapes or writing over a tape that should not 
have been reused can be a minor catastrophe. Un­
fortunately, such mixups can happen all too easily, 
making it most desirable to have some sort of 
identification recorded on the tape itself, in addi­
tion to the paper label attached to the reel. This 
is the function of the header label. A normal header 
label contains the file name, a reel number, a reel 
sequence number within the file (if there is more 
than one reel to the file), the date of creation of 
the tape, and the retention cycle. These last two 
items serve important purposes: they prevent a 
tape from being reused when the information on it 
is still needed, and they prevent the information on 
a tape from being used after it is outdated. 

A program to use labeled tapes must obviously 
provide for the creation of labels on new output 
tapes, for checking the labels of input tapes to de­
termine that the right data is being used, and for 
checking labels of output tapes to be sure that valid 
data is not being destroyed. Label creation and 
label checking are two of the many functions pro­
vided by 10CS, with next to no effort required of 
the programmer. 

MAGNETIC TAPE OPERATIONS 113 

Restart. It occasionally happens that a job must 
be stopped when it is partly completed. This can 
happen as a result of machine trouble, operator 
error, or because a higher priority job must be run. 
vVhen the job is restarted, a number of problems 
arise. How far along was the job when it was 
stopped? \Vhat was in core storage? Which tapes 
were mounted on the tape units? Where was each 
tape positioned? The general idea of a restart 
procedure is to provide the answers to these ques­
tions at a number of points in the running of the 
job; these are called checkpoints. Anytime the job 
must be stopped, it is necessary only to return to 
the most recent checkpoint and start from there 
rather than going back to the beginning of the job. 

Routines must be provided that will take care 
of all the problems of establishing checkpoints and 
restarting a job that was stopped before it was 
completed. At the completion of processing of 
every tape, and at any other point the programmer 
wishes to specify, the entire contents of core storage 
must be dumped onto a separate tape; this estab­
lishes where the program was at the time of the 
checkpoint. This dump must also contain the 
identification of every tape then mounted and block 
counters that tell the position of each tape. If it 
is necessary to restart, the special routines can be 
called into operation. They will print out instruc­
tions to the operator as to what tapes to mount; 
they will position each tape at the point where it 
was at the time of the selected checkpoint and call 
back into storage the exact storage contents at the 
time of the checkpoint. The program can now con­
tinue just as if nothing had happened. 

Let us now return to the consideration of the 
10CS package itself. As noted above, the program­
mer writes macro-instructions in his source pro­
gram. The first of these is the Define Tape File 
(DTF) macro, of which there must be one for each 
tape file. We are not concerned here with the de­
tails of writing the DTF macros, which, although 
presenting no conceptual difficulties, would take too 
much space to describe completely. Therefore, the 
examples below are somewhat "schematic," in that 
we summarize the information that would have to 
be in the DTF macro without actually displaying 
the form in which it would be written. 

The DTF macros define the files; the following 
macros call for action upon them. 

OPEN. Before the processing of a file can be 
started, the file must be initialized by the use of 
the macro-instruction OPEN. This macro may 



114 IBM 1401 PROGRAMMING 

have any symbol in the label field. It has the code 
OPEN in the operation code field and the name of 
the file in the operand field. The name must be the 
same as that used in the DTF macro. 

The OPEN macro-instruction performs the fol­
lowing operations on the file when the object pro­
gram is run: 

1. The file is made available for processing. 
2. The tape is rewound, if desired. 
3. The tape label is processed if the DTF indi­

cates that the tape is labeled. For input files, the 
OPEN macro reads and checks the header tape 
label; for output files, OPEN checks the retention 
code of the mounted reel and writes a new label if 
the code indicates that the information is no longer 
valid. 

The operations performed for the first reel of a 
multireel file are performed automatically for each 
succeeding reel within the file. The checks are 
made as the end of one reel is reached and before 
the use of records from the next reel. This is done 
as an automatic part of the GET and PUT macros; 
the programmer need write only one OPEN for all 
reels of a multireel file. 

CLOSE. When a tape file is no longer needed, 
it is removed from use by executing the macro­
instruction CLOSE. Like the other macros, this 
one may have a symbolic label; the operand field 
contains the names of the files being closed, with 
the names separated by commas if there is more 
than one. The following operations are performed 
on output files: 

1. Any records still in the output area are written 
on tape, which .takes care of partly filled blocks. 
The routine then writes a tape mark, followed by 
the trailer label, followed by another tape mark. 

2. The tape is rewound, if desired. 
3. The file is made unavailable for processing. 

For input files, the operations are the following: 

1. The trailer label block and/or record counts 
are checked if this action has been specified in the 
DTF macro. 

2. The tape is rewound. 

GET. This macro performs all the operations 
required to obtain another record and make it 
ready for processing. The programmer is thus re­
lieved of the hours or days of programming required 
to accomplish all of the following: 

1. If all the records in the preceding block have 
been processed, another tape block is read. 

2. If all the records have not been used, a new 
record is made available. 

3. If a tape error is detected in reading, the 
routine backspaces the tape and reads again. If 
the difficulty is nothing more serious than a speck 
of dust, which is often the case, the backspacing 
and rereading will often dislodge it and the second 
reading will be correct. However, if the tape is 
still not readable after several attempts to reread 
it, the routine branches to an error routine supplied 
by the programmer, which takes whatever action 
the programmer has decided should be taken in such 
a situation. 

4. If the end-of-reel condition is detected in read­
ing, the trailer label block and/or record counts are 
checked and a character in the trailer label is in­
spected to determine whether another reel of the 
same file follows. If the DTF macro specifies 
special routines for the end-of-reel and end-of-file 
conditions, a branch is made. If not, the tape is 
rewound and the tape on the alternate unit for this 
file is prepared for use. 

The GET macro, which as usual may have a 
symbolic label, specifies in the operand field the file 
from which a record is to be obtained. All of the 
foregoing operations follow automatically (as far 
as the programmer is concerned). 

PUT. This macro is analogous to GET, except 
that it refers to output files. It performs the fol­
lowing operations: 

1. A record from an input area (or from a work­
ing storage area) is moved to an output area. If 
this record fills the output area, the block is written 
on tape. 

2. If an error is detected in the writing, the tape 
is backspaced and rewritten. If .the record is still 
bad, a section of tape is erased and the record is 
written again. If an extended section of tape is 
bad, the routine branches to the programmer's error 
routine. 

3. If the end-of-reel reflective spot is detected 
during writing, the trailer label is written (with 
an indication that another reel follows), the reel 
is rewound, and another reel is used for further 
writing with this file. 

It is realized that a quick sketch of this sort does 
not give the reader enough information to begin 
writing useful programs with IOCS. It is hoped, 
however, that if the general idea of how the system 
can be used has been grasped then the reader will 
have no particular difficulty in picking up the de-



... 

tails. In order to get a little better feel for the 
use of the system, we may consider some examples . 

Let us first rewrite the illustrative program in 
Section 8.2, with blocking of the tape. The block 
diagram of Figure 8.5 is now considerably simpler, 
even though a great deal more is being done. The 
OPEN box, for instance, takes care of all label 
checking. The PUT box takes care of all tape 
writing, blocking, and checking. The fact that the 
output tape is blocked would be specified in the 
DTF for this file, which we are not showing. Ex­
cept for the DTF, all we have to do to handle 
blocking is to set up an output area large enough 
to hold a complete block. The CLOSE box takes 
care of writing a trailer label, writing tape marks. 
and rewinding the tape. 

The Autocoder program shown in Figure 8.6 is 
not especially difficult either, although the new cod­
ing form makes it appear a little strange. Notice 
the free form in which the operands are written. 
About the only restriction in writing the operands 
is that there be not more than one blank space 
within the operand field, since two consecutive 
blanks indicate the end of the field. The remarks 
may begin anywhere after two blanks; it is common 
practice to start all remarks in the same column 
for ease of reading. Note also that the operation 
field is now five columns instead of three to allow 
for the augmented operation codes and the macro­
operation codes. 

This program uses two new Autocoder pseudo-

IB~O 
Program 

0 

MAGNETIC TAPE OPERATIONS 115 

Figure 8.5. Block diagram of the Autocoder operations to do the 
job diagrammed in Figure 8.3. 

o FORM X24·1350·1 
PRINTED IN U.S.A. 

Identification 
Programmed by 140 I / 1410 AUTOCODER COOl NG SHEET 76 80 

Oate ___ Page NO.yt of __ 

line label pperatior OPERAND 
3 56 IS 16 2021 25 30 35 40 45 50 "" 60 65 70 

o I STA RT. : ItiPEN I (j1Jr,p IJ. T 
o 2 READ I R R.EA 0 A CAR,D. 
03 : PUT C A R,D .fllJ r,p lJ T 
04 : BlC lASTeD LAST CAR.D .Q 

05 : 8 READ }Ill. 
06 LASTC.o. CLrJ.St. IrJUTPU,T 
07 : LeA MES5GI .21.2 JrJ.o END M.E.SS A tiE 
08 

I W 
09 : H Ji!-3 
10 MESsaI' Dew '@.J~8 FINISHE.D.@. 
I I IrJ.lJ TP {j"" D.A 3X80 .xl. .S . 
I 2 CARD : El)U / 
I 3 

I END START. 
I 4 : 

.J -
Figure 8.6. Autocoder program to do the job diagrammed in Figure 8.5. 



116 IBM 1401 PROGRAMMING 

operations. The first is Define Area, for which the 
operation code is DA. It is used to set up an area 
of storage that can be referred to in the PUT macro. 
The 3 specifies that three groups of 80 characters 
are being set up for this area; the Xl specifies that 
index 1 is to be used by the object program in 
stepping through the records in the block; the G 
specifies that a group mark with a word mark is 
to be set in the character position to the right of 
the 240-position area. We shall see in Section 8.4 
how the DA instruction can also be used to define 
fields within the area. 

The second new pseudo-instruction is Equate, for 
which the operation code is EQU. It is used here 
to establish 0001 as the absolute equivalent of the 
symbol CARD. This would ordinarily be done 
with the DA operation, but it is always illegal to 
use a macro of this type to set up an area or a 
constant in the card read area, since this will ordi­
narily disturb program loading operations. 

Note that there is no "count" field on the Auto­
coder form. Numerical constants are entered into 
the program with as many character positions as 
there are digits in the constant. Alphameric con­
stants must be preceded and followed by the sym­
bol @. 

REVIEW QUESTIONS 

1. Distinguish between a record count, control total, 
and hash total. List advantages and disadvantages of 
each, in terms of such considerations as simplicity of 
computation, degree of checking provided, and types of 
errors checked against. 

2. Why is record blocking used? 
3. It would seem that as many records as possible 

should be placed in a block-that is, that the blocking 
factor should be as large as possible. What sets a limit 
on the degree of blocking? 

4. List the functions of a header label. 
5. What does the programmer do to incorporate the 

desired 10CS routines in his program? 
6. What are the principal differences between SPS 

and Autocoder? 

8.4 Inventory Control Case Study 

The following case study illustrates the use of 
many of the techniques and concepts that have been 
discussed in this section. 

Inventory control, as used here, refers to the 
process of keeping an up-to-date record of the 
status of every part in the inventory of a manu-

facturing company. In the example to be studied 
here we are given a master inventory tape con­
taining a record for each stock item. Each record 
contains the part number and the quantity on hand. 
The object of the inventory control application is 
to maintain this file so that it represents the status 
of the actual inventory as of the most recent up­
da ting of the file. 

Changes in stock status are introduced into the 
data processing system in the form of a deck of 
cards. Each card shows the part number, :1' code 
to indicate whether the card represents a receipt of 
more stock items, a recount, or an issue to the 
manufacturing operation or to a customer. There 
can be more than one card per part number, such 
as when a shipment of stock items has been added 
to the inventory and a shipment has been issued to 
a customer, during the period represented by the 
update. Again, there could very well have been 
several shipments to customers during the period. 
Before the transaction deck reaches the computer, 
it has been sorted on part number and classification 
code in such a way that for anyone part number 
recounts are first, then receipts, and then issues. 
This sequencing of the cards within one part num­
ber will guarantee that even though a large ship­
ment is received and another large shipment issued 
during the transactoin period, for instance, the data 
processing system will not erroneously indicate that 
the large issue created an out-of-stock condition. 

Recounts are coded to sort at the front of the 
transactions. This is done on the assumption that 
the recount quantity is taken before any transac­
tions. Another common way to handle adjustments 
is to enter them as changes, either plus or minus, 
rather than entering a complete new count as we 
have done here. 

The master file is in ascending sequence on part 
number. 

Our job is to use the transaction deck and the 
old master file to produce a new master file that 
shows the inventory status after the changes de­
scribed by the transaction file. 

A block diagram of the computer operations, in­
cluding card reading and tape handling, is shown 
in Figure 8.7. The actions called for by this block 
diagram are best understood by considering several 
situations and seeing what the block diagram says 
to do for each. Suppose first that there is a single 
transaction card for the first item in the master 
file. We begin by setting a switch to what is called 



the ON position. We read this first card and GET 
the first master record. We next ask if the part 
numbers in the transaction and the master are the 
same. They are, by assumption, so we use the 
transaction code to determine whether this is a re­
count, receipt, or issue, and update the master record 
accordingly. We ask if this was the last card. The 

MAGNETIC TAPE OPERATIONS 117 

answer is no, so we read another card and return 
to the comparison to determine whether the part 
numbers are equal. We assumed a one-card group 
for the first stock item, so the comparison this time 
will show that the master part number is less than 
the transaction part number. This will cause the 
updated master record to be PUT into the output 

Figure 8.7. Block diagram of an inventory control procedure. 



118 IBM 1401 PROGRAMMING 

area, after which we return to GET another master 
record. 

If there had been several cards for the first part 
number in the file, they would have been processed, 
without writing the new master record, by the re­
peated use of the loop containing the classification 
code test. 

If the first transaction card is for some master 
file record other than the first, then all of the rec­
ords prior to this one will be PUT into the output 
area before the part number comparison shows 
equal. 

If at any time the part number of a master record 
turns out to be greater than the transaction part 
number, then an error is indicated. This could be 
caused either by an out-of-sequence file or by an 
incorrect transaction part number. It could hap­
pen, for instance, if the first transaction card had 
a part number smaller than that of the first master 
record. It is clear that in this case reading more 
master records is never going to find a matching 
part number, since both files are assumed to be in 
ascending sequence on part number. It could also 
happen if a transaction card had a part number 
that was not the same as the part number of any 
record in the master file. This test does not give 
an absolute guaranty that no transaction part 
numbers are incorrect but only that if an incorrect 
part number does not match we will catch it. 

Suppose now that the last transaction card is 
a single-card group corresponding to the last master 
record. This time the last-card test will give a 
yes answer, which causes the switch to be set to 
the OFF position, after which we write this last new 
master and go back and try to GET another master 
record. This will be found instead to be the tape 
mark, and the GET routine will take us out of the 
processing loop. We shall see why another last 
card test is necessary in a moment. 

If the last master record has corresponding to it 
several transaction records, then the analysis is the 
same as in the preceding paragraph, except that 
we will go around the updating loop the necessary 
times before finding the last card. 

Suppose next that the last transaction card corre­
sponds to a master record before the end of the 
tape. In this situation we must still copy the re­
maining master records in unchanged form from 
the old master to the new master. This is why the 
switch is necessary. After the master record corre­
sponding to the last. record in the transaction file 
has been PUT, then all following master records 

are going to show larger than the final part number. 
But now this is not an error. Therefore, when the 
last card is detected, we set a switch to bypass the 
comparison and simply read and copy master rec­
ords until the tape mark is sensed and the GET 
routine takes us out. 

One final error possibility remains. Some trans­
action card might have an incorrect part num­
ber greater than that of the last master record. In 
this case we would go around the master record 
reading and writing loop looking for a matching 
master part number. Naturally, we would never 
find it but would instead finally detect the tape 
mark. Nuw, when we ask whether the card most 
recently read was the last one, the answer will be 
no, indicating that the end of the master file was 
reached without having reached the end of the 
transaction deck. This is, of course, an error and 
we so indicate. 

This is a very standard type of block diagram in 
sequential file data processing. Its basic logic ap­
plies to many applications besides inventory con­
trol and it applies when both files are on tape. 
Even the reader who may not be directly concerned 
with magnetic tapes will profit by a careful study 
of the logic of this block diagram. 

We may now consider the details of the actual 
program for this example. First assume that the 
transaction cards have a five-character part num­
ber in columns 1 to 5, a single-digit classification 
code in 6, and a four-digit quantity in 7 to 10. The 
classification code is a 1 if the transaction repre­
sents a recount quantity that should replace the 
master record quantity, a 2 if it represents a re­
ceipt, and a 3 if it represents an issue. The master 
records each consist of a five-character part num­
ber and a five-digit quantity. The master tape 
is blocked with 20 records in each block. If the 
last block is not full, it is padded out with blanks. 

The program for this job is shown in Figure 8.8. 
We begin by opening the two files and reading a 
card. OLDMST and NEWMST are the names of 
the two files; these names would have to be in the 
DTF macros for the two files, which we are not 
showing. The DTF macros would also specify, 
among other things, the blocking factors for the 
two files and would name EOR as the routine to 
which the GET routine should branch when the 
end -of -reel is detected in reading the old master. 

N ext, an old master is placed in the work area. 
The switch is coded as a No Operation, so that it 
will have no effect until it is changed to a Branch. 



Ii 

After this we compare the part number of the 
transaction from the card, with the part number 
from the old master. The next two instructions 
branch out to the appropriate routines for the cases 
where the two are not equal. If they are the same, 
we reach the three branch instructions that deter­
mine whether the transaction is a recount, receipt 
or issue. 

This testing of the classification code uses a new 

IBlt10 
Program 

0 

MAGNETIC TAPE OPERATIONS 119 

variation of the Branch instruction, called Branch 
If Character Equal. This instruction says to 
branch to the instruction shown in the I -address 
if the single character at the B-address is the same 
as the d-character. If it is not, we go on in se­
quence. This is used here because we do not like 
to assume that the classification code will always 
be 1, 2, or 3. This is placing a little too much 
reliance on fallible human beings. Therefore, we 

o FORMX24·1350·1 
PRINTED IN U.S.A. 

, 

Programmed by 1401/1410 AUTOCODER CODING SHEET 
Identification ' 

76 80 
Page No.W of ~ Date ___ 

Line label 
3 56 

o 1 START: 
o 2 

I 

o 3 READM : 
04 5,WITCM 
05 C,¢,MP : 

06 : 
07 : 
08 

I 

09 : 
I 0 I 

I I : 
I 2 : 
I 3 : 
I 4 REC,rJ.UN: 

I 
I 5 I 

I 6 WECPT I 

I 7 : 
I 8 ISSUE: 
I 9 LCT£ST, 
20 : 
2 I 5WSET: 
2 2 : - I -

line label 
]' SS 

o 1 B ] 
02 

I 

03 ErJR I 

04 : 
I 

05 

06 : 
01 WR.4PU.P. 

I 
08 

09 : 
10 I 

I I 
I 

I 2 I 

I 

pperation 
1516 2021 25 30 35 

¢,PEN ¢LDAIST. NEWMST 
R 
e,ET ¢LDM5T 
N¢P 8 
C TRANPN M,5. TPN. 
BH ERR¢R 
BL 8 
BCE REC,¢,tJA/. C,¢.OE / 
BCE RECPT. CtJo.E 2 
BCE I65UE C.rJ.o.E 3 
LeA iM.E55G I 225 
w 
H ~-3 . 
MCW TR.A N,f}, y. MSTQ.y' 
B L CTE5.T 
A TR.A H,t;, Y. M5T(J.Y 
B L CT.EST 
5 TRA N.t¥. Y. M,5TOY 
BLe 5WSET. 
R C~MP I 

Mew s,W8R. SW.ITCH 

Operati~'2 
151S 0 I :>5 30 3!'i 

pur (i,L OMST .IN tWIrIST 
8 RE.A.D,M 
BLe WRA PUP 
LeA MESS,G.2 ,229 
W 
H if -3. 
CLOSE ii.L O,Ms'T NEW.MST. 
L CA M£5SG3 2/0 
w 
H *-3 
H 

40 

. 40 

-

I 2 

OPERAND 
45 50 55 60 65 70 

RE.AP, A CARD 

,¢.P ellA N6ED T.¢' BRANCH LATER 

ERR,r),R, IF M.ASTER. HIGfI 
G,(j r.¢. WRI T.E I F ,AtA 5TER L,¢.W 
TEST C ¢.DE 
.r. 
J. 
ERR.¢.R. IF /'J,¢,7 I ,2 ,~.R 3 

LAST 
NrJ. -

OPERAND 
4!'i 50 

CAR.D ..Q 
READ CAR.D ,1. BRANCH 

55 

Page No.~ of ~ 
I 2 

60 65 70 

.BA CK. T.d, GET A.N¢, THER ,MASTER 
LAST CARD Q 
N,(J. - £RR,(I,R. 

WRITE Jr/J.B ENO MESS A BE 

-- --
Figure 8.8. Autocoder program for the inventory control procedure diagrammed in Figure 8.7. 



120 IBM 1401 PROGRAMMING 

test explicitly against all three codes, branching 
to the correct instruction when one of them is found. 
If the code turns out to be none of the three, 
as it could through mispunching, then we write an 
error message and halt. 

If the transaction is a recount, we replace the 
master quantity with the transaction quantity. If 
it is a receipt, we add the transaction quantity to 
the master quantity, and if it was an issue we sub­
tract the transaction quantity from the master. 

Setting the switch is a simple matter of moving 
a B to the operation code, thus changing it from a 
No Operation to a Branch. 

The Define ... A ..... rea instructions perform a nev,' 
function for us in this program. Notice that fol­
lowing each DA there are a few lines with no opera­
tion code. These are part of the DA, defining fields 
within it. The first location of the defined area is 
considered location 1. The high-order and low­
order positions of the fields are punched, beginning 
with the leftmost column of the operand field. These 
two numbers are separated by a comma. The 
processor places a word mark over the leftmost 
location of each field defined in this way. The 
fields within the defined areas may now be referred 
to symbolically, without, of course, our knowing 
where they are located in storage. Both tapes have 
blocking factors of 20, which requires setting up 
sufficient space in the input and output areas for 
200 characters. 

The wrap-up for this job consists simply of clos­
ing both files and writing the "job finished" message 
to the operator. 

The case study has been deliberately simplified 
to let us concentrate on the tape operations in­
volved. It should be realized that a normal in-

Line Lobel pperation , 56 1516 2021 25 30 35 

o I TRA NPN, EQ,U 5 
o 2 C¢OE 1 EOLJ 6 
o 3 TRA Nf;.Y: E(l.LJ /0 
04 OLOMS~ OA 20X/O XI (i 

05 I.ISTPN. ! II 5. 
06 IMST.Q,Y : 6 10 
07 NEWM57i OA 20XIO X2 G 

ventory control task includes a great deal more than 
we have shown here. Furthermore, we have taken 
as strai,ghtforward an approach to the tape manipu­
lation as possible in order to keep this first sample 
of work with blocked tapes as uncomplicated as 
possible. Chapter 10 is devoted entirely to a 
thorough study of a more nearly complete inventory 
control application, both from an application stand­
point and from a programming standpoint. 

REVIEW QUESTIONS 

1. In the program of this section, when would the 
result of the last-card test following the tape mark test 
ever be yes? 

2. Suppose that the last card of the transaction deck 
were inadvertently placed at the front of the deck. What 
would the program do? 

3. What would the program as shown do if the old 
master file erroneously had two records with the same 
part number? 

4. Why is it more convenient to have two Read a Card 
instructions than to have only one? 

EXERCISES 

*1. Given a tape with unblocked records of 100 char­
acters each, with a tape mark following the last record. 
Draw a block diagram and write an SPS program to print 
each record exactly as it appears on tape. Each page of 
the output is to have a maximum of 50 lines. 

2. Given a tape with unblocked records of ten charac­
ters each, consisting of a four-digit account number and 
a six-digit dollar amount. The records are in ascending 
sequence on account number; there are duplicate account 
numbers. At the end of the tape there is a tape mark, 
followed by a trailer label, followed by another tape 
mark. Positions 6 to 10 of the trailer contain a count 
of the number of blocks in the tape. 

OPERAND 
40 45 50 5!; 

Page No.~ of ~ 
I 2 

60 65 7n 

08 14£556/ 1 , Dew. @,BAo. CLASS c.rJ.OE. JiJe, ./lA,L TEO@ 
09 MESStiZ Dew @FIL E. ,~R o.ATA ER.R.t1.R J.¢.B II.AlTE.o.@ 
I 0 MESS() 3' Dew '@J.¢,B FINIS HE./J.@ 
I I 5,WBR : Dew @,/l@ 

I 2 : END STAR.T 
I 3 : I I I I I I I I I I I I I I I I I I I I I , , I I I , 

Figure B.B (Continued). 



Draw a block diagram and write an SPS program to 
summarize the amounts by account number and make a 
block count check. 

3. Estimate the time required to execute the program 
of Exercise 2, assuming that there are 10,000 blocks on 
the tape and that a 729 II tape at low density is used. 

4. Draw a block diagram of the operations necessary 
to read a block, check for tape errors, and reread up to 
nine times if there is an error. If the error persists, an 
error message is to be written. 

*5. Modify the block diagram and program of the in­
ventory control case study as follows. Another type of 
transaction, with a code of zero, may be present in the 
deck: an addition. An addition record represents a new 
part number, the record for which is to be added to the 
master file. However, do not add the new record to the 
file if it has the same part number as a record already in 
the file.. "Adding" the record to the file consists of get­
ting the card record into the proper tape format and 
moving the part number and quantity to the output 
area. 

MAGNETIC TAPE OPERATIONS 121 

6. Modify the block diagram and program of Exercise 
5 as follows. A fifth type of transaction, with a code of 
4, may be present in the deck: a deletion. A deletion 
record represents a part number the record of which is 
to .be removed from the file, that is, not written into the 
new master. Write a short tape containing all deleted 
master records. 

*7. Given two tapes having the same record format: 
a four-character employee number, followed by 90 char­
acters of information about the employee. Both tapes 
are in ascending sequence on employee number, and there 
are no duplications. Draw a block diagram and write an 
Autocoder program to merge the two tapes-that is, 
produce a third tape containing in ascending sequence 
all records from the two input tapes. 

8. Same as Exercise 7, exce·pt that a sequence check 
is to be made on both input tapes. This will require 
storage of the most recent employee number from each 
input tape to use in determining whether the record just 
read is greater than the preceding-for each tape. 



9. 

122 

RANDOM ACCESS FILE STORAGE 

9. 1 Basic Concepts 

So far in this text we have concentrated on 
programs built around files on punched cards 
or magnetic tape. These file storage media 
have the advantage that they are relatively 
inexpensive. They have the partially off­
setting disadvantage that a record within 
the file can be accessed only sequentially, 
since it is not possible to get to one record 
without passing over all of the records in 
front of it. This characteristic forces us to 
sequence all files and transactions according 
to the keys of the records, which leads to 
considerable amounts of time spent in sort­
ing. It also forces us to batch the transac­
tions to be processed against the file, since it 
is not economical to read the entire master 
file to process a few transactions. 

In many applications these requirements 
of sequenced files and batch processing are 
not serious handicaps; in fact, batch proces­
sing is in many cases a natural mode of op­
eration. In other applications, however, it 
would be much more desirable to be able 
to process transactions immediately as they 
arise, rather than waiting for batches of 
them to accumulate, and without sorting. 
To do so requires a master file storage me­
dium that permits any record in the file to 
be obtained about as quickly as any other. 
(This is most definitely not true of magnetic 
tape.) Such a device is called a random ac­
cess file storage medium. 

It must be realized that the time to ob­
tain a record from the currently available 
random access file storage devices does de­
pend somewhat on its location relative to 

the location of the record most recently read. 
Thus the devices are not truly random. 
However, the maximum time to obtain a 
record is so much less than the time to ob­
tain a randomly placed record from a reel 
of magnetic tape that we are justified in 
using the word "random" in comparison with 
tape file storage. (The only completely ran­
dom access storage device widely used at 
present is magnetic core storage; the time 
to obtain a word is absolutely independent 
of the location of the preceding word. In 
comparison witli magnetic core storage, "ran­
dom access" file storage media are decidedly 
not random, but this is not a relevant com­
parison, since the much more expensive core 
storage is restricted to smaller sizes than are 
needed for file storage.) 

With any of the various random access file 
storage devices, it is possible and desirable 
to organize programs in entirely different 
ways from those employed with magnetic 
tape file storage. No sorting of the trans­
actions is ordinarily required; transactions 
can be processed as soon as they reach the 
data processing center, if desired; the pro­
gram can be organized to refer to many small 
files if it is convenient to do so. Further­
more, certain types of applications become 
feasible that are simply not practical with 
magnetic tapes. 

9.2 The IBM 1405 and 1301 Disk 
Storage Units 

The random access file storage devices 
available for IBM computers are built around 



Figure 9.1. The IBM 1405 Disk Storage Unit. 

RANDOM ACCESS FILE STORAGE 123 

a set of rotating metal disks on which information 
is recorded. In the IDM 1405, pictured in Figure 
9.1, information is written or read by one or more 
access arms that are able to move to the de ired 
disk and to the desired position on a disk. A 
1401 system including the 1405 is called an IBM 

RAMAC® 1401 System, where RAMAC stands for 
Random Access Method of Accounting and Control. 
In the IBM 1301, pictured in Figure 9.2, information 
is written and read by a complete set of access arms, 
one for each disk surface. 

The IBM 1405. The IDM 1405 Disk Storage Unit 
can contain 25 disks (Modell) or 50 disks (Model 
2), storing either 10 or 20 million characters. Each 
disk has 200 concentric tracks on which data can 
be recorded. A track has two sides, one on each 
surface of the disk. Each track is further divided 
into 10 sectors, five on each side: the upper side 
of each track contains sectors zero through 4, and 
the lower side sectors 5 through 9.. A track sector, 
which contains 200 characters, is the smallest unit , 
of disk information that can be addressed. 

A 1405 unit normally has one access arm, with 
a second available as an optional special feature. 
The fork-shaped arm has two read-write heads 

Figure 9.2. The IBM 1301 Disk Storage Unit. 



124 IBM 1401 PROGRAMMING 

that read and record data on the disks. One read­
write head is for the top disk face and the other 
is for the bottom disk face. An access arm moves 
to the position specified by an instruction by mov­
ing vertically to the correct disk and horizontally 
to the specified track on that disk. 

Seven 
Position 
Indelible 
Address 

Disk 49 

( Mod"le' 

Disk 25 

D;,k', ~ Mod"le 1 

D;,kOO ) 

The disks rotate on a vertical shaft at the rate 
of 1200 rpm. Data is read or recorded at the rate 
of 22,500 characters per sec. The time required to 
access a record varies between 100 and 800 ms, 
depending on how far the arm has to move from 
its previous position. 

200 Tracks 
Top Of Disk 

200 Tracks 
Bottom Of Disk 

Top 
Of Disk 

ImJIlIllIUIIllIlIlIlIIUIflIUIIlIlIlIUIIlIlIlIUIIlIlIUIiIIUIUIUIIlIUII"IIIIIIII"IIIIII,,"I"III""I"""IIII"III""I""III"I"""IIII"III""I"""IIIIIII"",,I"III""I""IIIJ 

Bottom 
Of Disk 

o 9 19 29 39 49 59 69 79 89 99 109 119 129 139 149 159 169 179 189 199 

Top Surface Disk 00 

Figure 9.3. Information arrangement and 

addressing in the IBM 1405 Disk Storage Unit. 



As with magnetic tapes, the representation of a 
character on a disk consists of seven bits, including 
a parity bit. \Vhen information is read from the 
disk, parity is checked and an indicator is turned 
on if parity is not correct. An instruction is pro­
vided with which it is possible to determine whether 
the information recorded on the disk is actually 
the same as the information in core storage from 
which the disk data was written. 

Each sector on a disk has a seven-digit address. 
The first digit specifies the disk storage unit; for 
a 1401 system, this is always zero. The next four 
digits specify the track. A Modell unit contains 
5000 tracks (0000-4999); a Model 2 unit contains 
10,000 tracks (0000-9999). The outermost track 
of the bottom disk has the address 0000 and the 
innermost track of the bottom disk has the address 
0199. The outermost track of the second disk has 
the address 0200 and the innermost track of the 
second disk has the address 0399. The tracks on 
the twenty-fifth disk have addresses running from 
4800 at the outside to 4999 at the inside. The 
tracks on the fiftieth disk have addresses running 
from 9800 at the outside to 9999 at the inside. The 
sixth digit specifies the sector. The seventh digit 
of a disk storage address must always be zero. 
vVhen a sector is addressed from the computer, it 
is preceded by a digit specifying the desired access 
arm; this digit is either zero or one. The arrange­
ment and addressing of disk information is shown 
schematically in Figure 9.3. It may be noted from 
this figure that each record actually contains its 
address indelibly recorded in seven additional posi­
tions at the beginning of the record. 

The IBM 1301. The IBM 1301 Disk Storage Unit 
is similar to the 1405, but in several particulars it 
is much more powerful. The major change is that 
instead of having one arm that travels to the spe­
cified disk, it has a complete set of arms, one for 
each disk, arranged in a comblike array. This 
means that once the arms have been positioned 
to a track location, that track on all disks is avail­
able with no further delay. It is convenient to 
think of all the tracks accessed from one setting 
of the arms as composing a cylinder. 

Record length in the 1301 is flexible, instead of 
being restricted to 200 characters. This obviously 
simplifies working with records that are too large 
or too small to fit conveniently and efficiently in 
200 characters. 

Besides the radically different arm arrangement 

RANDOM ACCESS FILE STORAGE 125 

and the flexible record length, the 1301 also has 
greater speed and capacity. The disks turn at 
1800 rpm instead of 1200, which shortens all delays 
based on disk rotation by a third. This increase 
in speed of rotation, coupled with a greater char­
acter density on the disks, raises the transfer rate 
from 22,500 characters per second to 75,000. Fi­
nally, the capacity of a 1301 module is 25 million 
characters instead of the maximum of 20 million 
in a 1405 Model 2. 

The unique powers of the 1301 lead to program 
organization and processing techniques that are 
sometimes markedly different from those used with 
the 1405. Since we shall not have space to cover 
the application of both systems, we limit the fol­
lowing discussions to the 1405, which is more widely 
distributed, at least at present. 

REVIEW QUESTIONS 

1. How many characters can be stored on one 1405 
disk? 

2. Which disk in a 1405 Unit contains sector 33862? 
How many disks must the access arm go past in moving 
from sector 08330 to sector 41045? 

3. True or false: in the 1405 the greatest distance 
(both horizontally and vertically) that an arm can 
move is from track 00000 to track 99999. 

9.3 Disk Storage Programming for the 
IBM 1405 

There are five instructions in the 1401 that are 
used in working with disk storage. 

The first of these is the Seek Disk instruction. 
Before any reading or writing can occur, the access 
arm must be moved to the desired track. This 
movement is initiated with a Seek Disk instruction. 
After the correct track has been located, a separate 
Read or Write instruction is used to move data. 

As with the tape instructions, these instructions 
have an operation code of M, which is the same 
as that for Move Characters to a Word Mark. The 
fact that this is a disk instruction is specified by 
the first two characters of the A-address, which 
must be %F. The nature of the disk instruction 
is specified by the low-order character of the A­
address and by the d-character, if there is one. 
In a Seek Disk instruction the A-address sign must 
be %FO and there is no d-character. The B-ad­
dress specifies the high-order position in core stor­
age of the address of the desired sector. 



126 IBM 1401 PROGRAMMING 

The use of Autocoder considerably simplifies the 
writing of disk instructions, as it does tape in­
structions. The augmented operation codes make 
it unnecessary to write an A-address or the d-char­
acter. When the Autocoder processor translates 
the operation code SD for Seek Disk, for instance, 
it fills in the %FO automatically. 

It should be emphasized that the Seek Disk in­
struction does not move any data; it simply posi­
tions the access arm at the correct disk and correct 
track. The computer may continue processing with 
other instructions while the arm is in motion. If 
a disk Read or vVrite instruction is encountered 
before the arm motion is completed, the read or 
write operation is delayed until the access arm is 
in correct position. 

Once the access arm is positioned at the correct 
track, a Read or vVrite Disk instruction can be 
used to transfer data. Reading is initiated with an 
instruction that once again has an operation code 
of M. The A-address must be either %Fl or %F2 
and the d-character must be R for read. If the 
A-address is roFl, then a single 200-character rec­
ord will be read. If the A-address is roF2, then 
we have specified what is called a full track read­
that is, the specified record and the four following 
on the same side of the track will be read. The 
B-address specifies the high-order position in core 
storage of the disk record address, which might be 
thought to be redundant, for the disk position has 
already been established by the Seek instruction. 

Seek Disk 

FORMAT 

Mnemonic 

MCW 

Op Code 

M 

AUTOCODER FORMAT SD Address 

However, the presence of the address in the Read 
instruction allows the accuracy of the machine's 
functioning to be checked, since at the beginning 
of each sector the address of the sector is recorded 
in nonerasable form. Furthermore, the Read in­
struction is not able to "remember" from the Seek 
instruction which sector was specified. 

The data from disk storage is read into core 
storage beginning immediately after the disk ad­
dress, the position of which is specified by the B­
address. In other words, the B-address specifies 
where in core storage the disk address is located, 
and the record is read into core storage immediately 
after the disk address. The transfer of information 
stops at the end of the sector or on encountering 
a group mark with a word mark in core storage. 
(Under normal conditions the program is organ­
ized so that the two occur at the same time.) The 
group mark should be one position to the right of 
the space reserved for the information from the 
disk. If it is encountered earlier than that, the 
transmission stops and an indicator called W rong­
Length Record is turned on. 

Writing of information from core storage to disk 
storage is carried out with a Write Disk instruction, 
which is very similar to Read Disk, except that the 
d-character is W. 

A Write Disk instruction must always be fol­
lowed by a Write Disk Check instruction. This 
instruction causes a character-by-character com­
parison of data in core storage with the data just 

A-address 

%FO 

B-address 

xxx 

FUNCTION The A-address specifies that a seek operation is to be performed by the access arm. The 
B-address specifies the high-order position in core storage of the disk record address. The selected access 
arm seeks the disk and track specified in the disk record address. Processing can continue while the access 
arm is in motion. 

WORD MARKS Not affected. 

TIMING T = 0.0115 (LI + 9)ms + access time. 

Note If the access arm is already at the disk track (not necessarily at the correct sector) that is to be 
used, a Seek Disk instruction is not needed. 



written on the disk and turns on an error indicator 
if there are any differences. The actual machine 
instruction is just like a Write Disk instruction 
except that the A-address must be %F3 and there 
is no d-character. 

In the instructions that we have described, word 
marks in core storage are not written on the disk 
and when disk data is read word marks are not 
affected in core storage. There is, as in the case 
of tapes, a separate instruction for converting core 
storage word marks into separate characters when 
the record is written on the disk. When such a 
record is read back with a suitable instruction, 
the special characters are again reconverted to 
word marks. Beyond this note of their existence 
we shall not consider instructions for reading and 
writing word marks. 

The final type of disk instruction is simply a 
variation of one that we met much earlier, Branch 
If Indicator On. For use with disk storage, we 
have five additional indicators and corresponding 
d-characters. These are shown in the summary 
box for the instruction. "Any Disk Unit Error 

Read Disk Single-Record 

Read Disk Full-Track 

FORMAT 

RANDOM ACCESS FILE STORAGE 127 

Condition" comes on if anyone of the first three 
is on. This makes it possible to make one check 
for any disk errors and, if the indicator is off, to 
proceed with the normal program. If the .indicator 
is on, only then is it necessary to test the other 
three indicators to find out which of the errors 
is present. 

For a simple illustration of the way these in­
structions may be used, we may consider the in­
ventory control application of Section 8.4. We 
assume as before that the transaction cards contain 
a part number in columns 1 to 5, a code in column 
6 indicating an adjustment, a receipt or an issue, 
and a quantity in columns 7 to 10. We assume 
that we have a 1405 Model 2, which has exactly 
100,000 sectors in it, and that each master inventory 
record contains 200 characters. We assume that 
the part numbers are numerical and shall, therefore, 
be able to use the part number directly as the ad­
dress of the corresponding master record. The 
master record is assumed to contain in positions 1 
to 5 the part number and in positions 6 to 10 a 
quantity. 

Mnemonic 

MCW 

Op Code 

M 

A-address 

%Fx 

B-address d-character 

xxx R 

AUTOCODER FORMAT Single-Record: RD Address 
Full-Track: RDF Address 

FUNCTION This instruction causes data to be read from disk storage into core storage. The digit 1 in 
the A-address C%F1) specifies that a single record is to be read. The reading of the disk is stopped by a 
group mark with a word mark in core storage and the end of the sector. If the digit 2 is present in the A-ad­
dress C%F2) a full-track read occurs. That is, five 200-character records are read from disk storage into 
core storage. Reading stops at the end of the fifth sector .. 

The B-address specifies the high-order position in core storage of the disk-record address and is followed 
by the area in storage reserved for the data read from the disk. 

The R in the d-character position signifies that this is a read operation. 

WORD MARKS A group mark with a word mark must appear one position to the right of the last po­
sition reserved in core storage for the disk record. If a group mark with a word mark is detected before 
reading of the record is completed, the wrong-length record indicator turns on and reading stops. 

TIMING T = 0.0115 CLI + 9) + 10 ms + disk rotation. 
60.196 ms is maximum time for single-record read. 
10.196 ms is minimum time for single-record read. 



128 IBM 1401 PROGRAMMING 

We suppose that transactions are entered in the 
card reader as small groups of them accumulate. 
If the job were large enough to occupy a 1401 Disk 
System fully, small groups might be entered almost 
continuously. If this application were only one of 
many things being done with the computer, the 
groups would be entered occasionally, and between 
times the system could be used for other work. 

Note that it is completely unnecessary to sort the 
transactions into sequence on any key, for the 
master file is not in any such sequence, which in 
turn is possible because it is not necessary to access 
the file sequentially. For the same reason it is not 
necessary to batch the transactions, although this 
might be done as a matter of convenience if the 
transactions do not need immediate action. 

The procedure is now so simple that the block 

Write Disk Single-Record 

Write Disk Full-Track 

FORMAT 

diagram. in Figure 9.4 is hardly needed. As each 
transaction card is read, the corresponding master 
record is obtained from disk storage, updated, and 
replaced in disk storage. This simple process is 
repeated for as many cards as there are. 

The program shown in Figure 9.5 presents no 
special problems. We begin by reading a card and 
setting up the disk address, which is done by mov­
ing the part number into a constant that will have 
zeros as the first and last digits. Then we seek the 
disk record having this address and, when it is 
found, read it into storage. This is followed by a 
test for reading errors. Note in the constants in 
this program that immediately following the disk 
address we have defined an area of 200 characters 
to hold the record. In this Define Area instruction, 
note the G; this will cause a group mark with a 

Mnemonic 

MCW 

Op Code 

M 

A-address 

%Fx 

B-address d-character 

xxx W 

AUTOCODER FORMAT Single-Record: WD Address 
Full-Track: WDF Address 

FUNCTION This instruction causes a single record (or full-track) in core storage to be written on a disk 
record. The digit 1 in the A-address (%Fl) specifies that a single record is to be written. If a 2 is present in 
the A-address (%F2), five 200-character records are written on a disk track. Writing stops at the end of 
the fifth sector. 

The B-address specifies the high-order position of the disk-record address and is followed by the data to 
be written on the disk. 

The W in the d-character position signifies that this is a write operation. 
Before writing starts, an automatic check of the record address in storage, with the record address on the 

disk, is made. If they are not the same, the unequal-address compare indicator is turned on, and the data in 
storage is not written on the disk. 

WORD MARKS The writing of data stops when the end of a record is reached or when a group mark with 
a word mark is sensed in core storage. If the group mark with word mark is sensed before the end of a 
record, the remainder of the disk record is filled with blanks and the wrong-length record indicator is turned 
on. 

TIMING T = 0.0115 (LI + 9) + 10 ms + rotation time. 
60.196 ms is maximum time for a single record write. 
10.196 ms is minimum time for a single record write. 

Note. A Write Disk Check instruction must be performed following a write disk operation. No other 
disk storage operation can be performed until the check of data written on the disk is completed. 

. .... 



Write Disk Check 

FORMAT 

Mnemonic 
MCW 

Op Code 
M 

A-address 
%F3 

RANDOM ACCESS FILE STORAGE 129 

B-address 
xxx 

AUTOCODER FORMAT 'WDC Address 

FUNCTION This instruction causes a character-by-character comparison of the data in core storage with 
the data just recorded on the disk. The system automatically reads the disk record that was most recently 
addressed. This instruction must follow a Write Disk instruction. 

The digit 3 in the A-address specifies that a checking operation is to be performed. Either a single record 
or a full track is checked, depending on how the data was recorded by the most recent Write Disk instruc­
tion. 

The B-address specifies the area in core storage where the record address and the data recorded on the 
disk are located. 

WORD MARKS A group mark with a word mark must appear one position to the right of the disk data 
in core storage. 

TIMING T = 0.0115 eLI + 9)ms + 50 ms. 

Note. If the disk address in core storage is not the same as the address in the record, the unequal-address 
compare indicator is turned on. If any of the characters in the disk record are not the same as the characters 
in core storage, the read-back-check error indicator is turned on. 

Branch If Indicator On 

FORMAT 

Mnemonic 

B 

Op Code 

B 

I-address d-character 

xxx x 

FUNCTION The d-character specifies the indicator tested. If the indicator is on, the next instruction 
is taken from the I-address. If the indicator is off, the next sequential instruction is taken. The valid 
d-characters and the indicators they test are as shown below. 

d-character 

v 

W 
X 
y 
N 

WORD MARKS Not affected. 

TIMING T = 0.0115 eLI + 1)ms. 

Indicator 

Read-or-Write Parity or 
Read-Back Check Error 

Wrong-Length Record 
Unequal-Address Compare 
Any Disk-Unit Error Condition 
Access Inoperable 



130 IBM 1401 PROGRAMMING 

Figure 9.4. Block diagram of the disk storage approach to the inventory control application of Section 8.4. 



word mark to be entered following the 200-character 
area. N ext we inspect the classification code in the 
card record to determine whether it is a recount, 
receipt, or issue, just as in the magnetic tape ver­
sion. Once again, if it is none of these three, we 
write an error message. N ext, the transaction 

IBMO 
Program 

0 

RANDOM ACCESS FILE STORAGE 131 

quantity is used to update the master record and 
the master record is written back in disk storage. 
Note that there is no Seek instruction here: it is 
not necessary to seek the correct track if we are 
already positioned in it. Immediately following 
the Write, there is the Write Check and a branch 

o FORM X24·1350·1 
PRINTED IN U.S.A. 

1401/1410 AUTOCODER CODING 
Identification ' , 

Programmed by SHEET 76 90 

Page No. L...J..!J of ...L-Date ___ 

line Label Operati~ , 56 1516 021 25 30 35 

o I STA RT : R 
o 2 

i MCW TRA.NP.A1 DS.KA DD- / 
o 3 : SO f)SKADD-6 
o 4 : Ro f)SKAOO-6 
o 5 

I BIN ERR¢R. Y 
06 : BCE REC,¢,U.N CrJ.DE / 
07 : BCE RECPT.. CrilJ.E 2 
09 : BCE ISSUE CIJOE 3 
09 ~ LCA ItJESSG.1 22,G 
I 0 

I W 
I I 

I H ~-3 

I 2 REC.rJUN~ Mew TR.AI/,rJ.V MST.~Y 
I 3 : B WRI, T,E, , , I I I I I I , I 

~ R,E,C,~T, : A T.R A N/t. Y. ,M5.T.GJY 
I 5 : B WRITE 
I 6 ISSUE' 5 TRA N,Q. Y. M5TQ.Y 
I 7 WRITE I iVD OSKAOD-6 
I 9 

I woe OSK.Ao.O-6. 
I 9 : IB.IN ERR,¢R.. X" I I I 

20 : BLC HAL T 
I B STAR~, 2 I I I I 

2 2 ERR,¢R : LCA MES$,G.2 222 
2 3 

, W 
2 4 

I II. ~-3 

2 5 IIA L T. I H !START. 
I 

.1 

line Label ()peration 
1'- 56 151S 2021 25 30 35 

o I OSKAD.o, DeW 0000000 
0,2 FILE I OA / %.200 G. 
03 MSTPN : / 5 
04 MGT/iY : 6 10 

, , 

, 

, , 

I I I 

I 2 

OPERAND 
40 45 eo 55 60 65 70 

REAO A CA RO 
5£T u.p DISK REC,¢,RD A DDRE55 
SEEK 
READ 
BRANCII. IF ANY ERR.~R 
DETER.MINE 
TYP£¢F 
TRANSACTI¢.N 
.Bit D C,¢,DE -
WRITE. ERR,¢.R ,MESSAG.E 
AND ,II,ALT I I , , 

, , I I I I , 
I I I I I I I I I I I 

WRITE DISK R~C(I,RO 
,CHECK. WRIT.IN,G. 
BRAN.CH IF. ANY ERRrPR 
,LAST CAR.D ,Q 

--'-.J._-"---,---,-J..JL 

BEGIN, AGAIN. 

I I I ---....l..-.L---1--'--L.....L_l . ..L....L 

OPERAND 
40 4'1 50 55 

IF PUS H. START. 

Page No. wfJ of _2_ 
I 2 

60 65 70 

05 CARD. 1000/ OA /%.80 
06 TRANPM / 5. 
07 C¢.OE :- 6 6 
08 TRANQ Y: 7 10 
09 MESSG ,: f)Cw. @.BAD CLASS. C~OE. J~B HALTE.O@ 
10 M£55t; 2 Dew fi)FIL E. E.R.R.~R JriB HALT.EO@ 
I I : ENf) ST.AR.T 
I 2 : - I 

Figure 9.5. Autocoder program of the procedure diagrammed in Figure 9.4. 



132 IBM 1401 PROGRAMMING 

to an error routine if there is any file error. Finally, 
we test the last card switch and go back to the 
beginning if there are more cards. 

Note in the constants for this program that the 
alphabetic constants are entered in Autocoder pre­
ceded and followed by the character @. 

REVIEW QUESTIONS 

1. Must a new Seek instruction be executed if a dif­
ferent sector in the same track is to be read or written? 

2. Is there any circumstance in which it is not neces­
sary to follow a Write Disk instruction with a Write 
Disk Check instruction? 

9.4 Disk Organization and Addressing 

It may be well to consider precisely how the pre­
ceding example is not typical, in order to develop a 
few of the standard programming techniques in 
using disk storage. 

First of all, we assumed that the entire disk 
storage was taken up with the master file. This 
is seldom the case. Usually, space is reserved for 
programs and for the files of other applications. 

The most unrealistic thing about the preceding 
example is the assumption that the part numbers 
run from zero to 99999 in an unbroken numerical 
sequence. Such a simple correspondence between 
the key of the records and the record addresses is 
extremely uncommon. For one thing, part numbers 
are often not purely numerical; they often have 
letters and symbols in them. Second, even if they 
are numerical, they are often longer than five digits. 
Third, whether they are numerical or alphabetic, 
there are usually many unused numbers in the se­
quence, so that if we organize the disk storage as 
in the preceding example, a large part of it would 
never be used, which is obviously uneconomical. 
Our task for the rest of this section is to consider 
some of the commonly used ways of deriving from 
the key of a record the disk storage address of that 
record. 

The simplest method is based on deriving the 
address from the key by simple arithmetic. Sup­
pose, for example, that the keys are purely nu­
merical and seven digits long. Assume, further, 
that 20,000 disk storage records have been assigned 
to this file, with record addresses from 50,000 to 
69,999. What sort of a scheme could we set up 
to obtain from such a key an address in the spe-

cified range? One way is to proceed as follows: 
multiply the seven digit number by 2, drop the last 
three digits of the product, and add 5 to the high­
order position of the remaining digits. A little 
experimentation will show that for any seven-digit 
number this yields an address between 50,000 and 
69,999. 

This method does create a new problem, how­
ever. It is very likely that in some cases several 
keys will convert to the same address. For instance, 
the keys 1234567 and 1234568 both convert to disk 
address 52469. This situation is handled by a tech­
nique that is known as chaining-which has no rela­
tion to 1401 address chaining. To understand this 
technique, we must discuss how disk storage is ini­
tially loaded and how the records are obtained 
when disk storage is later read. 

Suppose we are loading storage with records 
whose addresses are derived by the simple com­
putation described above. The section of storage 
that is to be loaded is initially cleared to blanks, 
using a utility program that is described later. 
Then, as each record is about to be loaded into 
storage, the record address is computed from its 
key. Before storing the record at this address, 
however, we must first check to make sure that 
the space really is free. If the space still contains 
blanks, we go ahead and load the record into the 
sector address as computed. If, however, the space 
already contains a record because some previous 
key had converted to the same address, then we 
store this record in an overflow location. This 
might be the next consecutive record, or it might 
be in a separate section of storage set up for over­
flows. Then, in the record having the address com­
puted from this key, we place an overflow address 
that specifies where the second record having this 
same computed address is located. When two or 
more records have the same disk storage address, 
we speak of the one that is placed in the computed 
address location as the home record and all of the 
others as overflow records. Each record is said to 
be chained to the one following. 

'Ve naturally hope that the characteristics of the 
keys of the source records, together with the method 
of computing the addresses, will lead to a minimum 
of such overflows. This, in fact, is one of the pri­
mary considerations in choosing an address com­
putation method. 

'Vhen a file that has been loaded in this fashion 
is to be read, we go through the same address com-



putation scheme on the key. We seek and read 
the record at this computed address and then check 
to see whether it contains the record that we desire 
by comparing the key of the record that has been 
read with the key from which the address was 
computed. If the two are the same, we are able 
to proceed immediately with processing. If they 
are not the same, then we must obtain the address 
of the first overflow record from the record that 
has been read. When it has been read into core 
storage, we can similarly inspect its key and find 
out whether it is the desired one. This process is 
continued until the proper record has been brought 
into core storage. 

Under unfavorable circumstances, the address 
computation method suggested above could lead to 
very long chains of records. This, in turn, would 
lead to long processing times to search through the 
chains to find the desired record. For instance, 
suppose that in one range of the keys there was an 
unbroken sequence of part numbers, running from 
1200000 to 1200499. Everyone of these keys would 
convert to the same address, namely 52400. This 
would lead to a chain 500 records long, which would 
obviously be highly undesirable. It appears, there­
fore, that this method of arriving at a record ad­
dress applies only if the keys are fairly uniformly 
distributed over the entire range of possible values. 
This is frequently not the case, and we must there­
fore attempt to find address computation schemes 
that will create a fairly uniform distribution of the 
addresses, even when the incoming keys are tightly 
bunched together in some regions. A good deal of 
effort has been put into finding such schemes, and 
the subject is still under development. 

It is not possible to state anyone method that 
will always lead to a sufficiently uniform pattern. 
Two methods that often work, however, are the 
following: 

1. Split the key into sections of four or five digits 
and add them. Multiply by a compression factor 
that will bring the final product into the desired 
range of address and add the base address. 

Example. Given eight-digit keys that must be 
changed into sector addresses between 32000 and 
36999, which is 5000 sectors. Take the key 
82145369 as a sample. 

Add the first four digits to the second four, giving 
13583. Multiply by 0.25, which is required to 
"compress" a number that could be as large as 

RANDOM ACCESS FILE STORAGE 133 

19998 into a number no larger than 5000, giving 
3395. Add the base address, giving the final result: 
35395. 

2. Split the key into two parts, multiply the two 
parts and extract the middle five digits. Multiply 
by a suitable compression factor and add the base 
address. 

EXa1nple. Given nine-digit keys that must be 
changed into sector addresses between 24000 and 
38999, which is 15,000 sectors. Take the key 
298154726 as a sample. 

Multiply the first five digits by the last four, 
giving 140905690. Extract the middle five digits, 
giving 09056. Multiply by the compression factor 
0.15, giving 01358. Add the base address, giving 
the final result: 25358. 

Another approach is to use some address com­
putation scheme to reach a specified track, without 
going on to compute a sector within the track. 
Sector zero within this track is then used as an 
index to the other nine sectors. That is to say, 
sector zero contains the keys of all the records 
stored in that track, together with their addresses. 
Now, to obtain a record, we compute the track 
address, seek sector zero on that track, read the 
index into storage, and from that obtain the ad­
dress of the proper record location. Since the rec­
ord will be in the same track as the index, only 
one Seek is required and the method is not too 
time consuming. Overflow records become neces­
sary only if the keys of more than nine records 
convert to the same track address. A disadvantage 
of this method is that it does require two Read 
Disk instructions to obtain a record. 

The same general idea can be extended even 
further. An index to the entire file can be set up 
so that we first locate the proper disk, then go to 
the outside track on that disk to find an index to 
the desired track, and from there go to the desired 
record. This has the advantage that little or no 
address computation is required and that if suitably 
set up there are no overflow records. 

REVIEW QUESTIONS 

1. Using the address computation scheme outlined at 
the beginning of this subsection, to what disk sector 
address does 0085692 convert? How about 8882450? 

2. What is the basic idea of chaining? 
3. What is the most important factor in choosing a 

randomizing formula for computing the address of the 
home record in a chained file? 



134 IBM 1401 PROGRAMMING 

9.5 Disk Storage Utility Routines 

A number of utility programs are available for 
simplifying work with files stored in random access 
storage. A brief description of some of these rou­
tines also allows us to introduce a few more ideas 
about how disk storage may be used. 

Clear disk storage. The clear disk storage pro­
gram erases all data in areas of disk storage speci­
fied by the user and fills these areas with blanks. 
The program can clear disk storage completely or 
only in selected areas. 

Disk to tape. Each time a disk storage trans­
action is processed, the previous contents of the 
master file are no longer available. This raises the 
possibility that by machine error, program error, 
or improper data, parts of the file could be de­
stroyed. This problem is not nearly so serious 
when magnetic tapes are used because we can save 
the tapes from previous cycles and, if necessary, 
rerun the job. With disk storage, of course, we 
no longer have the previous contents of the file 
unless steps have been taken to make a copy at 
periodic intervals. This capability is provided by 
the disk-to-tape routine, whereby the entire file or 
selected portions of it can be written on magnetic 
tape. This dumping of file storage can be done in 
a reasonably short time and in most applications 
would be done periodically, perhaps weekly. Now, 
if through some sort of error the file contents were 
destroyed, it is necessary only to reload the file 
from the most recent tape and reprocess all of the 
transactions that have occurred since then. It is, 
of course, necessary to save the transactions for 
this purpose. 

Tape to disk. This routine is the exact analogy 
of the disk to tape, making it possible to reload 
the entire disk file or selected portions of it from 
magnetic tape. 

Disk to card. This program also makes it pos­
sible to preserve the contents of disk storage. It 
is normally used only in systems that do not include 
magnetic tapes because the time required to punch 
cards is much greater than the time required to 
write on magnetic tape. 

Card to disk. This program is the exact opposite 
of the disk to card. 

In all of these loading and unloading programs 

the smallest unit of information that can be moved 
is a single track (2000 characters). 

Chain loading program. This program simpli­
fies the initial loading of a disk file when the file is 
being created. In order to use this system, the 
programmer must provide an address computation 
routine that can be used by the loading program. 
The program loads the master records into disk 
storage under control of this addressing routine 
and establishes chains for master records converting 
to the same disk storage address. Each record in 
a master chain is located as close to the preceding 
chain record as possible, thus minimizing access 
time during disk storage operations. Input records 
can be on cards or tape. 

Chain additions program. This program adds 
new records to a chained file, once again under con­
trol of an addressing routine that must be provided 
by the programmer. The format of the added rec­
ords must be consistent with that of the records 
already in the file. 

Chain maintenance program. This program 
carries out a number of operations that are required 
in using a random access file storage system. For 
instance, when a record is to be deleted from the 
file the simplest thing to do is to tag it by placing 
a character somewhere in the record to indicate that 
it is to be deleted. Then the chain maintenance 
program can be used to remove the record from 
the file and make the record storage locations avail­
able for later additions, modifying chains as may 
be necessary. 

The chain maintenance program makes it pos­
sible to take advantage of a characteristic of most 
files. Analysis of many typical files shows that a 
relatively small fraction of the items account for 
a relatively large fraction of the total activity. 
This is sometimes described approximately as the 
80-20 rule: 80 per cent of the activity comes from 
20 per cent of the records. This being the case, it 
obviously saves disk access time to place the records 
having the highest activity at the front of their 
chains. A simple way to accomplish this sequence 
is to allow space in the records for a count of the 
number of times each record is referred to; this 
count is kept by the application program. The 
chain maintenance program can then inspect the 
count and reorganize the chains so that the records 
most frequently referred to appear early in the 
chains. 



, ~I 

The chain maintenance program can be run 
periodically whenever time is available, since it 
keeps track of a portion of the file remaining to 
be processed. 

In use, the chain loading program, the chain 
additions program, and the chain maintenance pro­
gram are all stored in one part of the disk storage 
unit so that they can be loaded into core storage 
in a simple calling procedure. A common plan is 
to allot some of the lowest numbered tracks to 
these service routines. 

9.6 Case Study: Wholesale Grocery 

The following example, based on the data proc­
essing requirements of the chain or wholesale gro­
cery operation, serves several purposes. It provides 
an example of how an IBM 1401 RAMAC System 
can be used. At the same time, it provides an ex­
ample of how several related data processing ac­
tivities are frequently combined into one program. 
Finally, it illustrates how an ingenious programmer 
can take full advantage of the equipment available 
to him by tailoring the machine methods to fit both 
the equipment and the application. (In this last 
respect the case study is, in certain details, slightly 
atypical of disk file methods.) We describe the 
business situation in which this program would be 
applied, discuss the organization of the program 
itself, and show a block diagram of the processing. 
We shall not write a program. 

A certain wholesale grocery distributor has an 
inventory of 5000 merchandise items which he 
trucks to 30 stores. An order must be shipped not 
later than the next working day after he receives 
it. The order must be accompanied by an invoice. 

The order, as received, shows the items in the 
sequence in which they appear in the catalog. They 
are arranged for convenience in making up the 
order, with similar items grouped together and 
with the broad classes arranged in the order in 
which they appear on the shelves in a typical store. 
There is no way to change this general scheme of 
catalog arrangement. In the warehouse, however, 
the merchandise is arranged for ease in making 
up the order, with the most active items, for in­
stance, located close to the loading dock. The 
invoice used by the warehouse to make up the 
shipment must show the merchandise items in the 
sequence in which they should be "picked." Thus 

RANDOM ACCESS FILE STORAGE 135 

Figure 9.6. Disk storage organization for the wholesale grocery 

application described in the text. 

the order sequence must be transformed into the 
picking sequence for printing the invoice. Fur­
thermore, each page of the invoice must show the 
store name and address. 

It is necessary to maintain records of the ship­
ments to each store for billing purposes. It is also 
necessary to maintain inventory records on all 
of the items in the warehouse and to print low-stock 
notices when the balance on hand falls below a 
minimum point. 

The order is fed into the computer on a deck of 
cards that shows the desired merchandise in terms 
of page and line numbers in the catalog, along with 
the quantity desired, store number, and date. Each 
card refers to one catalog page and shows the 
quantity desired for each of as many as 50 items. 
The order will require as many cards as there are 
catalog pages from which merchandise is ordered. 
By a special method of card coding it is possible 
to specify a quantity as high as 79 for each item. 

The disk storage is divided into five sections for 
this application, as shown in Figure 9.6. 

Store name and address file. This file contains 
the number, name, and address of each store cus­
tomer, along with billing information. As each 
store order is processed during invoice preparation, 
the proper store record is selected from the disk 
file and placed with the order number and the date 
in core storage. This information is printed on each 
page of the invoice. 



136 IBM 1401 PROGRAMMING 

Picking 
Quan- Sequence 

Page Line tity Number 

1 13 20 4 
1 34 5 7 
2 02 15 2 
6 41 2 9 
8 12 30 1 
8 13 8 5 

Figure 9.7. Illustrative grocery order, with picking sequence num­
bers for the item~ ordered. 

Picking sequence table. A picking sequence 
table is set up in disk storage with an entry for 
every stock item. This table is in order by page 
and line number and shows the picking sequence 
for each item in the warehouse stock. 

Billing and inventory record. For each item of 
stock, a billing and inventory record is stored in 
the disk storage as one 200-character record. These 
records are arranged in warehouse location order, 
that is, in picking sequence. The record contains 
the warehouse location, the picking sequence, 
catalog page and line number, size, alphabetic de­
scription of the item, minimum balance, total sales 
to date, unit price, balance on hand, and any other 
information required by the individual customer. 

These three files, together with the program for 
the application, will not completely fill the disk 
file. The remaining space is available for other 
applications. 

Store orders are processed as they arrive or per­
haps in small batches. The store order cards are 
fed into the 1401 grouped by store and in sequence 
by page number-the same order in which they were 
received. An entire order is read and the quantity 
stored before printing of the invoice begins. This 
is made necessary by the fact that the catalog 
sequence and the picking sequence are essentially 
unrelated. As each order card is read, the picking 
sequence table for that page is obtained from disk 
storage. Each line of the order is scanned, and, 
whenever a quantity appears, that quantity is 
stored at a core storage location indicated by the 
table. If no quantity was punched a zero is stored. 

The power of the program organization for this 
problem depends very much on the use of the core 
storage picking sequence table. This table must 
have one character position for each item in the 
stock. In our case we assumed 5000 items, and, 

therefore, 5000 core storage locations would have 
to be allocated to the table. (This would, of course, 
require a larger core storage than that assumed for 
the rest of this text.) Each item of stock is asso­
ciated with one character position in this table. 
The first position in the table is associated with the 
stock item that should be picked up first if it is 
present in the order. The second position is asso­
ciated with the stock item that should be picked up 
second, and so on through the 5000 positions. 

As each order card is read, the picking sequence 
table in disk storage is used to determine where in 
core storage the quantity for that stock item should 
be stored. '''hen all the order cards have been 
read, the core storage picking sequence table will 
contain as many nonzero entries as there are items 
ordered by the store but no identification of the 
items; this is inherent in the position of each quan­
tity within the table. After all the order cards have 
been read, it is necessary only to scan through the 
5000-position table looking for nonzero entries and 
keeping a count of which position of the table is 
being inspected. '''henever a nonzero character 
is found, the counter can then be used to compute 
the address of the corresponding record in the 
billing and inventory section of the disk storage, 
which we said was also in picking sequence order. 

An example may help to clarify this procedure. 
Suppose that the warehouse stocked only 10 items, 
to keep the example simple, and that a certain order 
lists six items. As each item is processed, its pick­
ing sequence number is obtained from the disk file. 
Assume that the items ordered, their quantities, 
and their picking sequence numbers are as shown 
in Figure 9.7. The essence of the scheme is to store 

Core 
Storage 

Location Quantity 

3001 30 
3002 15 
3003 0 
3004 20 
3005 8 
3006 0 
3007 5 
3008 0 
3009 2 
3010 0 

Figure 9.S. Illustrative core storage picking sequence table for 

the order of Table 9.1. 



the quantity for each item in the position in the 
core storage picking sequence table corresponding 
to its picking sequence number. Assuming that the 
entire core storage picking sequence table is cleared 
to zeros before the order is processed, our example 
would produce a table similar to that shown in 
Figure 9.8, which is taken (arbitrarily) to start 
at 3001. The 30 in position 3001 is now associated 
with the item shown on page 8, line 12 only by the 
relative location of the 30 in the table-but this 
is enough to identify it, since the billing and in­
ventory records are in the same sequence. 

What has been done here amounts to sorting the 
items in the order into picking sequence by a 
method known as distribution sorting. It is not 
typical of disk file applications to do this, but the 
programmer should always be alert for uncon­
ventional ways to do things, if time and expense 
can be saved. 

We may note briefly how it is possible to store 
a quantity up to 79 in one core storage position. 
This merely requires coding the quantity in terms 
not only of numerical bits but also the zone bits 
and the word mark bit. One possible system would 
be to specify that a word mark bit of 1 stands for 
a quantity of 40, the B-bit stands for a quantity 
of 20, and the A-bit thus stands for a quantity of 
10. Numerical bits are used in the normal manner 
to stand for quantities of zero to nine. Figure 9.9 
shows how a few representative quantities would 
be coded in this scheme. 

A moderately simple program can be used to 
create these codes as the quantities are read from 
the order cards, and another program can convert 
the codes back to normal two-digit quantities when 
the invoices are prepared. 

This use of the word mark bits is definitely not 
typical, but there is nothing wrong with it. In 

Coding 
Quan-

tity WM B A Numerical 

a a a a 0000 
10 a a 1 0000 
15 a 0 1 0101 
23 a 1 a 0011 
39 a 1 1 1001 
61 1 1 a 0001 
79 1 1 1 1001 

Figure 9.9 

No 

Figure 9.10. 

RANDOM ACCESS FilE STORAGE 137 

Process order 
card 

Scan storage 
for order 

quantities 

Test inventory 
and update 

B and I record 

Extend and edit 
invoice line 

Block diagram of the procedure for the wholesale 

grocery application. 

this case it brings about a saving of 5000 characters 
of storage~ which, in effect, makes the whole ap­
proach feasible. 

To prepare the invoice, we search through the 
core storage picking sequence table as outlined 
above. Each time a. nonzero item is detected the 
corresponding billing and inventory record is ob­
tained from disk storage. The inventory balance 



138 IBM 1401 PROGRAMMING 

is tested for availability. If stock is available, the 
inventory and sales-to-date balances are updated 
by the quantity ordered and the updated billing and 
inventory record is returned to disk storage. The 
quantity ordered is multiplied by the price, and 
a billing line is printed on the invoice. If an item 
is out of stock or if a minimum balance has been 
reached, an appropriate card is punched for infor­
mation to the buyers. After all items have been 
recorded on the invoice, a card is punched for the 
invoice total. 

The items now appear on the invoice in picking 
sequence. All card-sorting operations required by 
unit record methods have been eliminated by re­
cording the entire order in core storage in picking 
sequence as the initial step. 

A block diagram of the operations in this appli­
cation is shown in Figure 9.10. 

EXERCISES 

*1. Write a routine to compute a disk address from a 
seven-digit key by the method outlined in the beginning 
of Section 9.4, then read that record into core storage. 

2. Using the routine written for Exercise 1, write a 
routine to handle chaining. Assume that if the trans­
action key does not match the key in positions 1 to 10 

of the record, the sector address of the next record in the 
chain a ppears in positions 180-184 of the record. 
(Chains may be any number of records long.) 

*3. Set up a routine to read a record from an indexed 
file. The input key is nine digits long and purely numeri­
cal. Obtain a track address by forming the sum of the 
left three digits, the middle three digits, and the right 
three digits, then retaining only the last three digits of 
the sum. This gives the address of a track; obtain 
sector zero of this track, which contains an index of the 
records stored in the other nine sectors in that track. 
The index consists of ten-character groups, each group 
containing a nine-digit key and a one-digit sector num­
ber. Write a loop to search through the index, once it 
is in storage, to find the key in the index that matches 
the desired key; then use the corresponding sector num­
ber from the index to get the address and to read the 
desired record. 

4. A labor distribution problem begins with a deck of 
cards, each containing an employee number, a number 
of hours worked, and a job code. You are required to 
compute the labor cost for each labor voucher, assuming 
the existence of a file giving the pay rate for .each man 
and assuming no overtime (for this problem). There 
is also a file containing a record for each job code. You 
are required to print a line for each job represented in 
the input deck, showing the total labor cost for the week, 
and to update the job record to reflect this week's costs. 

Outline the method you would follow to carry out 
these operations, including block diagram. 

~. 



10. PLANNING AND INSTALLING 
A COMPUTER APPLICATION 

In this section we consider an inventory 
control problem that is a somewhat more 
realistic version of the case study at the 
end of Chapter 8. This case study still 
does not show the entire complexity of a 
normal inventory control job, but it is close 
enough to give a fair indication of the work 
that must be done in setting up a data proc~ 
essing application. We use this application 
as the framework for considering the various 
steps in going from a problem statement to 
a running computer program. 

10.1 Problem Statement 

A certain company employs about a thou­
sand workers in building small to medium 
electric motors. The company has an in­
ventory of 20,000 stock items. Four hun­
dred of these are motors and related items 
built to stock; the remainder are raw ma­
terials and subassemblies. The company 
also manufactures equipment to special 
order, but since it is never stocked this type 
of finished product is not included in the 
inventory control system. 

Inventory records in the past have been 
kept on ledger cards. As the company's 
business has expanded, this method has be­
come more and more cumbersome, expensive, 
and time consuming. The company has de­
cided to obtain an IBM 1401 Tape System 
for this problem and for a variety of other 
work, such as payroll, production scheduling, 

cost accounting, and a small amount of en­
gineering calculation. The company antici­
pates that keeping inventory control records 
with the computer will reduce costs slightly, 
provide more accurate inventory control in­
formation, reduce clerical delay, and even­
tually provide the basis for a more thorough 
management control of inventory position. 

The master file on magnetic tape contains 
the following information: 

Part Number 
Abbreviated Alphabetic Description 
Quantity on Hand 
Quantity on Order 
Reorder Point (the point at which more stock 

is ordered) 
Reorder Quantity (the size of the order that 

is placed) 
Code Character (indicates whether this is 

a finished item for sale, or a raw material 
or subassembly) 

Unit Price for Finished Goods 
Year-to-Date Sales for Finished Goods 

In this case study there are four types of 
transactions against this master file: 

1. Issues. These refer to stock that has 
been issued by the stock room either to pur­
chasers or to the manufacturing operation. 

2. Receipts. These refer to inventory 
items received in the stock room. 

3. Orders. These are orders placed by 
purchasing or production control for ma­
terials, subassemblies, or finished stock. 

4. Adjustments in the quantity on hand. 
139 



140 IBM 1401 PROGRAMMING 

These are the result of such things as recounts, loss, 
and spoilage. 

The processing required may be summarized as 
follows. The inventory tape is to be updated daily 
with the transactions being processed against the 
master file in much the same way as in the case 
study of Chapter 8. Adjustments replace the quan­
tity on hand in the master file record. Receipts 
are added to the master file quantity on hand. Is­
sues are subtracted from the master file quantity 
on hand. Orders are added to the quantity on order 
in the master file. Since the system is being set 
up so that nothing is ever received in the stockroom 
that was not ordered either by purchasing or pro­
duction control, receipts also represent a fulfillment 
of an order that was placed previously. Therefore, 
receipt quantities are subtracted from quantity on 
order. 

Before an issue quantity is subtracted from quan­
tity on hand, a test is made to determine whether 
there is enough stock on hand to supply the amount 
specified. If there is not, we reduce the quantity 
on hand to zero and print an out-of-stock notice. 
If the quantity on hand plus the quantity on order 
falls below the reorder point, we print a recommen­
dation to purchasing or production control that 
more of this item be ordered. We do not add this 
quantity to the quantity on order until we sub­
sequently receive an order transaction-that is, 
until purchasing or production control responds to 
the order recommendation. 

For issues of finished goods, the transaction 
quantity is to be multiplied by the unit price and 
the product added to the year-to-date sales. 

We may summarize how this application relates 
to the work of other departments within the com­
pany. The sales department sends to the data 
processing center notices of sales of standard items. 
These become issue transactions. Sales and en­
gineering together determine the raw materials and 
subassemblies required to manufacture special 
orders, which, in turn, become issue transactions 
when these items go out to the manufacturing floor. 
When production control receives a notice that the 
level of a standard item has fallen below the re­
order point, it is production control's responsibility 
to schedule the production of more of this item. 
In doing so, the need is created for raw materials 
from the stockroom, which once again become issue 
transactions. When items go into the stockroom 
after being completed in manufacturing, they be-

come receipt transactions. When an order recom­
mendation for raw materials goes to purchasing, a 
purchase order is normally placed with a vendor, 
taking into account any special considerations such 
as the combination of orders and quantity dis­
counts. As soon as pur,chasing places the order, 
an order transaction goes to the data processor to 
indicate that the quantity has been ordered. 

We see that virtually every part of the company 
is affected in one way or another by inventory con­
trol. One of the first things that would normally 
be considered in designing the data processing sys­
tem would be to put much of the interdepartment 
communication into a series of related computer 
programs. This, however, would get us deeply in 
the area of systems design, which is beyond the 
scope of a book on programming. 

10.2 Problem Analysis 

The decisions described in Section 10.1 fall in 
the category of what might be called over-all sys­
tems design. There is still considerable systems 
work that must be done before programming can 
begin; we might call the following area detailed 
systems design. Both areas have a bearing on the 
choice of machine to be used and the precise ma­
chine configuration to be ordered. We are ignoring 
this subject entirely. 

Detailed systems design in this application 
would include things like the following. 

Card, report, and file formats. Decision must 
be made on the information formats to be used 
in the system. 

Human readability: Spacing of information within 
a line and of lines on a report. 

Readability of cards after they have been punched. 

Whether preprinted forms are to be used for output 
or whether all headings are to be produced by the 
computer. 

How many copies of each report are required for 
the various groups that need them. 

Card punching simplicity. Cards are often used as 
the original source document, where the user writes 
his order or receipt or issue notice on a card, from 
which the same card is punched. If this is to be 
done, it must be ascertained that the necessary por-

,.' 



PLANNING AND INSTALLING A COMPUTER APPLICATION 141 

tions of the card are visible when required on the 
card punch. 

\Vhether any of the card or tape file formats must 
be compatible with those of other applications. 

This entire area of forms design is a specialized 
one, best undertaken by someone with experience 
and training. The job is not so simple as it may 
appear, and an inexperienced person can create 
sizable difficulties with poorly designed forms. 

Time schedules. Considerable attention must be 
given to the scheduling of computer time and data 
arrival. When is the computer available in relation 
to other work? What is the deadline on the arrival 
of input and what is done with late data? When 
must the reports be available to users? How do 
any peak loads such as at month or year end affect 
other applications being run on the computer? 

Volume data. What is the size of the master file 
in terms of number of records and number of char­
acters per record? How many transactions of each 
type may be expected daily? Are there peak 
periods when the transactions pile up? Can the 
entire master file be contained on one reel of tape 
or must a multireel file be set up? 

Controls and error checking. How much and 
what type of error checking is to be done? Some 
things will be done as a matter of course: tape read 
checking, parity checking throughout the computer, 
and, in most well-run installations, label checking 
and record or block counts. Beyond these obvious 
and simple possibilities, there are many other things 
that can be done. 

1. Batch control totals on transactions. 
2. Balancing equations of the general sort: 

Old Balance + Receipts - Issues = New Balance 

3. Testing for invalid conditions such as non­
existent classification codes, negative quantities on 
hand, and impossible dates. 

The cost of checking for errors must be weighed 
against the cost of not checking for errors. It is 
clear that errors can cost money . What is some­
times overlooked is the fact that more money can 
be spent on error checking than it is worth. Un­
fortunately, no satisfactory formulas can be given 
for arriving at a decision, since it is usually very 
difficult to establish what the cost of an error is or 
even to enumerat~ all the possibilities of errors. At 

the present state of the art of data processing we 
can only suggest that experience is the best guide. 

Master file creation. At some point it is neces­
sary to create the master file. If the job has pre­
viously been done with manual methods, it will be 
necessary to punch cards from the present records. 
If the job has previously been done with punched 
card techniques, it may be possible to convert the 
present file to magnetic tape with a separate com­
puter program written for the purpose. Often the 
data in the cards is rearranged and new informa­
tion added. 

In some applications this problem of file con­
version can be a major undertaking all by itself, 
requiring not only a good deal of personnel and 
computer time but careful planning in the schedul­
ing of the conversion. This planning is made neces­
sary by the fact that the business has to go on 
running while the computer is put into operation. 
Often the master file is much too large to permit a 
complete shutdown of this area of the company's 
clerical operation while the file is being converted. 
The usual technique is to prepare the master file as 
of a specific date and continue with the manual or 
punched card methods until the computer system 
is ready to go into operation. During the period 
between conversion of the file and the termination 
of the previous methods, all transactions are saved. 
vVhen the system is finally in operation, the first 
step is to process all the accumulated transactions 
against the new master file. If the file is extremely 
large, it is necessary, furthermore, to make the 
conversion gradually so that for a certain period 
of time part of the file will be processed by manual 
methods and part by electronic methods. We shall 
return to this point later and see that a period of 
parallel operation is usually desirable in any case. 

There is insufficient space in this book to provide 
enough background information about our assumed 
company to permit a realistic discussion of the 
bases of the decisions that must be made in this 
area of detailed systems design. We must instead 
be content with a statement of the following de­
cisions. 

Formats. The master file tape consists of blocks 
of eight records of 54 characters each, as assigned 
in Table 10.1. 

The transaction cards have the format shown in 
Table 10.2. 

An order recommendation card is punched when 



142 IBM 1401 PROGRAMMING 

TABLE 10.1 

Character 
Number Position 

Infor- of Char- Within 
mation acters Record 

Part Number 7 1-7 
Description 12 8-19 
Quantity on hand (QOH) 5 20-24 
Quantity on order (QOO) 5 25-29 
Reorder point (RP) 5 30-34 
Reorder quantity (RQ) 5 35-39 
Unit price 6 40-45 
Year-to-date sales 8 46-53 
Code: 0 = raw material or sub-

assembly 
1 = finished goods 1 54 

TABLE 10.2 

Num- Character 
ber of Position 

Infor- Char- Within 
mation acters Record 

Part number 7 1-7 
Transaction code 1 8 

1 = adjustment 
2 = receipt 
3 = order 
4 = issue 

Transaction quantity 5 9-13 

the inventory falls below the reorder point (see 
Table 10.3). 

Out of stock notices are printed with a format 
dictated only by normal readability requirements. 

The printer is used to print notices to the opera­
tor about the problem. 

The effect of schedules on our planning of this 
program is ignored, since this subj ect gets us too 
deeply into the interrelationships in the company, 
interrelationships between different applications on 
the computer, and the detailed requirements placed 
on this application by management. 

Volumes are similarly largely ignored except to 
note that the master file is small enough to fit on 
one reel of tape and small enough to permit creation 
of the master file in one step. (These are poor as­
sumptions in many actual applications.) 

Programmed error checking includes certain tests 
based on the organization of the file, such as check-

ing for nonexistent part numbers and invalid trans­
action codes. These are in addition to the label 
checking and tape checking that are automatically 
handled by the Input Output Control System. 

Before the transactions can be processed against 
the master file, they must be sorted into the same 
sequence as the master file. This is done here with 
a standard tape sorting package that is designed 
for the 1401, as for most computers. The sorting 
program is available in generalized form, requiring 
only that the programmer supply a few items of 
information about the file and machine configura­
tion in order to produce a sort program tailored to 
his needs. A generalized sorting routine of this type 
relieves each programmer of the large amount of 
effort required to write a specific sort for each job. 

It is a good idea to analyze each application to 
determine whether tape sorting or card sorting is 
more effective. Tape sorting is considerably faster, 
but it does tie up the relatively expensive computer. 
Card sorting is sometimes much less expensive, if 
the control field is short, but the total job time is 
greater. This is a decision that must be made for 
each application. 

10.3 Block Diagram and Program for 
Inventory Contr~1 Processing 

A block diagram of the processing to carry out 
the operations described in Section 10.2 is shown 
in Figure 10.1. The bulk of the file processing logic 
is the same as in the corresponding block diagram 
in Figure 8.6, but there are a few differences. 

In any file processing logic we must handle the 
situation where master file items remain after the 
end of the transactions has been reached. In the 
preceding block diagram and program (Figure 8.6) 
we set a switch for this purpose. Here we have 

Infor­
mation 

Part number 

TABLE 10.3 

Code: 0 = raw material or 
subassembly 

1 = finished goods 
Recommended quantity 

Number 
of Char­
acters 

7 

1 
5 

Card 
Columns 

1-7 

8 
9-13 

.' 



PLANNING AND INSTALLING A COMPUTER APPLICATION 143 

followed an alternative procedure, which is equally 
good in most circumstances. When the last card 
is detected, we replace the transaction part number 
with 9999999, which is the largest possible "part 
number"; we assume that there is no actual part 

Recount: replace 
master quantity with 
transaction quantity 

Replace transaction 
PN with g's 

number 9999999. This will cause the comparison 
to show that the part number from the master 
record is less than the "part number" from the 
"ca'rd,"---which in turn will cause the old master 
records to)be copied onto the new master tape. 

transaction quantity 
to quantity on order 

Extend price add 
to YTD sales 

Replace TQ 
with QOH 

Subtract TQ 
from QOH 

Yes 

Figure 10.1. Block diagram of the solution to the inventory control application described in the text. 



144 IBM 1401 PROGRAMMING 

The logic of the processing of the transactions is 
a little more complex now because we are required 
to do more. Recounts are handled as before by 
replacing the master quantity on hand with the 
transaction quantity. A receipt must be added to 
the quantity on hand but also subtracted from the 
quantity on order-since we assume that nothing 
is ever received unless it has been ordered. (A situ­
ation not satisfying this assumption could be 
handled with a recount entry.) The transaction 
quantity of an order is simply added to the quantity 
on order. 

Before, we merely subtracted an issue quantity 
from the quantity on hand. Now, we are required 
to determine that there is sufficient stock to fill the 
order before doing this. If the quantity on hand is 
not great enough to fill the issue request, we write 
a stock shortage notice and replace the transaction 
quantity with the quantity on hand. This will 
make certain that when the year-to-date sales are 
updated we will not have credited ourselves with 
selling more than we had. It also means that when 
the transaction quantity is subtracted from the 

IB}.10 
Program _______ _ 

o 

quantity on hand the quantity on hand will be re­
duced to zero, as it should be. (This could, of 
course, be handled in other ways, but this way 
simplifies coding.) 

If the item represents finished goods that are 
being sold to a customer, which we can determine 
by inspecting the code in the master record, we up­
date sales. 

In any case, we next determine whether the 
quantity on hand plus the quantity on order has 
fallen to or below the reorder point. If it has, we 
punch an order recommendation. We do not im­
mediately add the reorder quantity to the quantity 
on order; this is done only when an order transac­
tion is entered, indicating that purchasing or pro­
duction control has responded to the recommenda­
tion. 

Note the use of connectors (small circles enclos­
ing numbers) to avoid long lines on the block 
diagram. 

The program in Figure 10.2 follows the block 
diagram fairly closely. It provides a review of 
1401 coding, with no new concepts being introduced. 

O FORM X24·1350·1 
PRINTED IN U.S.A. 

Programl11ed by ______ _ 1401/1410 AUTOCODER CODING SHEET 
Identification' , 

76 ao 
Page No.l....1.6 of ~ 

, 2 Date __ _ 

Operation 
1516 202' 25 

OPERAND 
45 50 

Line Label 
3 56 30 35 40 70 55 60 65 

0' 5,TART: i¢.PEN I(iLOM5T NEIYMGT 
o 2 : R TRA N$,A C T I,¢,N C A, 12,.0 
03 REA!)M.: GET !rJL OMST W¢R.K , 
04 c.¢/,IP : c TRANPN MSTPAI. Cll-MPA RE. PA.RT NUMBERS 
OS 811 ERR.riR. (rRW TRANS. SE/l.UENCE £RR,¢R 
06 : ISL WRITNM L.¢W MASTER - N.¢. ACTIVITY 
07 : BCE REC,¢,UN TC.¢.Oc, / TE5T 
o a : BCE RECPT.. TC.~!)E 2 TRANSA eTI ON 
09 : BCE I~Ro.ER. Tca OE .3. CL A £5 J F.ICA T IrJ.N 
, 0 BCE ISSUE.. .Tca OE 4. C¢.OE 
, , : L CA MESSa.! 22.5 
, 2 : w 
, 3 H 1it-3 
'4 REC/~,I./.M M.ew TRAN(l.y'. M,6.T,rJ.@'fI 
, 5 : 8 RE.¢.RO, 
'6 R.ECPT I A T.RA.N,rJY, U5.T&dll. 
, 7 : 5 TR.A ,I/,IP. i. MS T,ri¢¢, 
, B : 8 R.E.~RO 
, 9¢.Ro.ER : A TR.AN6J. y" ,1r15.T@'-rJ.~ 
2 0 I : 8 R.£I/.R.o. 

2 4 : 
I 

Figure 10.2. Autocoder program of the procedure diagrammed in Figure 10.1. 



PLANNING AND INSTALLING A COMPUTER APPLICATION 145 

IBJ.1 0 0 o FORMX24·1350·1 
PRINTED IN U.S.A. 

Program 
Identification ' 

Programmed by 1401/1410 AUTOCODER CODING SHEET 76 80 
Page No.L..J.fJ of ~ Date ___ I 2 

Line Label ~peration OPERAND 
1 56 1516 2021 25 30 35 40 45 50 55 60 65 70 

o I SH,¢,RT : L CA MESSI3~2 ,ZAi 9 WRITE 
o 2 : MCW. TRANAN ,210 5 r.rj,CK 
o :1 

I MCW T.RANt;, y~ ,2.23 5 HrJ.RTA Gf 
04 : MeW M.ST.(J.~/I. 239 MESSAGE 
05 : W 
06 : Mew MST.Q.¢./I. TRA N.~V PUT. ,f).TV AVAIL IN TRA NS 

r)K I 5 TRANQ.Y. idS T.Q.¢.H 07 I 

08 
I BeE RE.¢.Rf) Mc.¢.aE. 0 BRA NCH IF RA.W MA TL • SUBASSY 

09 : ~,cw UNIT.P.I? Moll L,T. F.IN.IS liEf) G,rjfJ,f) -
I 0 1 M TRA,Nl}'Y ,MlJ.L T. £,X,T.E.N.O PRICE 
I I : ~ M.lJ.LT YTO'S ADD T,¢ YEAR T¢ DATE SALES 
I 2 RE¢RO : ?:A M.5Tli¢.II. TE.MP C,¢,MPARE ,Q.TY ,~N HAND PLllS 
I 3 

, 
A U,S T.Q,¢.(J, TEMP /},Ty ,~.N. ,¢.RO ER 

I 4 : C TE.MP RP. ,W,I T.II, RElj,R D.ER. PrJ.INT 
I 5 : BL LCTEST H,(/). R.E.¢.R DER 
I 6 

I Mew TRA NAN. 107 YES R.E¢ROE.R - PIJNCH PART 
I 7 : M,CW. iM.c¢,f)E. 108 NUA/BE-R COf)E A NO 

I Mew. RQ .• 113 R£.¢.ROER. I 8 I 

I II .~ P ,O,UA Nr.l T. Y 
20 L CT E.51i BLC LC. LA 5T CA,R,O ,0, 

I R C,¢.MP READ A CAR.D AND BRANCH 2 I 1 

2 2 LC : Mew. !MINEs T.R.ANPN F.¢R.C£. ,~IGII, T.R.ANS PART ~l 
2 3 WR.ITNM: P.UT W,rJ.R K. Tf/J, NE.WMS T. 
2 4 : '8 W,£. A.DAt. 

I 
2 5 

........ --~ --- -.....---- - ---

IB:MO 0 o FORMX24·1350·1 
PRINTED IN U.S.A. 

Program 
Identification , , 

Progrommed by 1401/1410 AUTOCODER CODING SHEET 76 80 
Page No.W of ~ Date ___ I 2 

Line Label Operation OPERAND 
1 56 1516 2021 25 30 35 40 45 50 55 60 65 70 

o I ~¢.R I 8L C WRAPUP , ,HERE FR¢M GET R.¢.tlT IN E 
o 2 ERR¢R : CS 0299 CLEAR. Sr.¢RAGe 
o 3 ~ LCA ME55G3 229 WRITE 
o 4 : w ERR/I.R MESSAGE 
o 5 H ~-3 

06 WRAPUPl CL,¢,SE OLDUST NEWM5T 
07 : CS 0299 CL EAR. Sr.¢,RAGE 
o 8 

, 
LeA ME5SG4 212 WRITE J¢B 

09 : w END MESSAGE 
I 0 

I H ~,--3 AND HALT. 
I I 

, 
H 

I 
I 2 

-
Figure 10.2 (Continuec/). 



146 IBM 1401 PROGRAMMING 

10.4 Program Checkout 

Any sizable data processing application provides 
hundreds of opportunities to make mistakes that 
will completely invalidate the program. These may 
range from simple slips of the pencil that result in 
nonexistent addresses, to block diagramming errors 
that destroy the logic of the program, to misunder­
standings of the intended procedures. A program 
is not finished until it has been thoroughly tested 
to remove all programming mistakes and to estab­
lish that the program properly carries out the in­
tentions of the person who defined the problem. 
This process of detecting and correcting errors and 
proving the correctness of a program can easily 
take weeks. 

There is no single way of solving all the prob­
lems of checkout. 'Ve must rely on a combination 
of procedures on the part of the programmer and 
on specialized checkout programs that are available 
to help him. Above all, the programmer must exer­
cise good judgment in determining how to go about 
the checkout process. This is one of the primary 

IBJ.1 0 
Program 

0 

areas in which experience is essential to a satisfac­
tory result. We can only point out some of the 
standard procedures and tool programs and encour­
age the reader to get as much practice as he can in 
this area, if possible under the guidance of an ex­
perienced programmer. 

One practice that is most strongly recommended 
is that all programs be very thoroughly checked 
before they are assembled. The programmer should 
plan to spend as much as several days prechecking 
a major program. This should be a character-by­
character check to make sure that every symbol 
and every operation code is correct, that O's and 
zeros are properly distinguished, that core storage 
information is never destroyed prematurely, that 
loops are counted correctly, that decimal points are 
properly handled, that all utility programs have 
been used in accordance with specifications, that 
timing problems are properly handled, etc. 

There seems to be an almost overwhelming temp­
tation when a program is finished to put it on a 
machine to see whether it will work. We cannot 
emphasize too strongly that all experience indicates 

o FORM XH·1350·1 
PRINTED IN U.S.A. 

Identification ' 
Programmed by 1401/1410 AUTOCODER CODING SHEET 76 80 

Page No. LdJ of ~ Date ___ I 2 

Line Lobel Operation OPERAND 
3 56 1516 2021 25 30 35 40 45 !iO !is 60 65 70 

o I MEsse/: Dew. @8AD CL A,SS C¢DE. JrJ.8 HA L T.E O@ 
o 2 MESSG2: DCW. 1@rJ.NLY P. A.R. T. AVA IL AD L E R.E~U£S TED@. 
o 3 M£SSG3: DCW. Ifi)FILE .tJR DA.TA. £R,RtJR J.rJ.a II.ALT.ED@. 
04 MESS.u4: Dew. @JrJ.o F.IN.IS.H.£D@ 
05 :000/ DA 1%8.0 
06 TRANPM 1/ 7. 
07 Ted.OE : 8 8 
08 TRANQY' 9. /3 
09 W¢,RK : DA IX5:4: 
10 MSTPN. I Ii). 7. 
I I DESC : 8 /,9 
I 2 MST,Q.tj,H: 20 24 
I 3 M5T,Q,rJ.(/J: 2S 29. 
I 4 R.P : [3,0 ,;14. 
I 5 R,() : 35'. 3.9, 
I 6 UN! TPR: ~o .45. 
I 7 YTf)S : 14:6' 53. 
I 8 MC.rP.O£ I 5".4 5.4. 
I 9 MULT : Dew. 000000000000 
20 T,EMP : Dew 00000 
2 I NINES I Dew 999.9999 
2 2 : END STA RT. 
2 3 

I 

Figure 10.2 (Continuec/). 

-.' 



PLANNING AND INSTALLING A COMPUTER APPLICATION 147 

that time spent in desk checking at this point will 
save much more time later. It can easily happen 
that half a dozen errors of an easily found variety 
can waste weeks of time and cause several unneces­
sary reassemblies. If possible, it is an excellent idea 
to have someone else go over the program, on the 
theory that the original programmer may have 
overlooked errors because he knows what the pro­
gram ought to do and has not checked to see that 
it actually will do what it is supposed to do. 

A listing of the program as punched is a valuable 
tool in desk checking, since it allows the program­
mer to scan for errors in punching or in interpreting 
his handwriting at the same time that he is check­
ing the program as he wrote it. 

It is recommended that a copy of the listing of 
the assembled absolute program be obtained; this is 
called the post listing in the SPS and Autocoder 
systems. This listing provides not only a diagnosis 
of certain errors that can be detected by the proc­
essor but also is a very useful document for all of 
the following stages of program checkout. This 
usefulness is based on the fact that the original sym­
bolic program and the assembled absolute program 
are shown on the same piece of paper. This allows 
the programmer to correlate the program that is ac­
tually running in the machine with the way that he 
wrote it to begin with. Most programmers file their 
original coding sheets at this point and rarely refer 
to them again. 

The basic idea of program checkout is to put the 
program in the machine with suitable test data to 
see whether it will compute correct results. At the 
outset, this test data may be very simple; the idea 
is to find out whether the program will produce any 
answers at all. The most common experience when 
the program is first put on the machine is that it 
stops before producing any results. This can be 
caused by a variety of errors. If the difficulty 
results in some sort of error indication on the com­
puter console, then it is fairly easy to get back to 
the source of the trouble, correct it, and try again. 
If the problem runs nearly to completion and then 
hangs up, or if it does produce problem answers but 
they are incorrect, then we have the problem of 
determining where in a program of many hundreds 
of instructions something went wrong. Two power­
ful techniques come into play at this point. 

The first is the use of a storage print, or, as it 
is more commonly called, a memory dump. This 
provides a printed listing of exactly what was in 

core storage at the time the program was stopped. 
In the 1401, and in most computer systems, the 
listing is printed with line identifications that make 
it simple to associate storage addresses with the 
printed contents. The memory dump allows the 
programmer to inspect the results of program modi­
fication, it provides a complete listing of all inter­
mediate and final results computed up to the point 
of the dump, it shows exactly what test data is 
being used, and it allows the programmer to de­
termine whether anything in storage has been modi­
fied that should not have been. 

Usually only a part of storage is printed; there 
is seldom any need to see the entire contents. The 
starting and ending addresses of the regions to be 
printed are entered from the computer console or 
from the card reader. 

The entire procedure is so simple, and the assist­
ance it provides so valuable, that it is strongly 
recommended that a memory dump be obtained at 
every checkout session. The alternative practice, 
followed by some inexperienced programmers, of 
copying down from the console a few supposedly 
critical numbers cannot be defended; it is inaccu­
rate, time consuming, and generally completely 
ineffective. 

The second important checkout technique is to 
check out the program in sections by providing for 
the printing of intermediate results. This allows 
the source of errors to be narrowed down succes­
sively. Furthermore, it assists in proving the cor­
rectness of a program. The purpose of checkout, 
after all, is not only to locate and correct errors 
but to guaranty that no undetected errors remain. 
The only way to do this is to verify every partial 
and final result against known test cases; printing 
out the partial or intermediate answers helps in 
this process. 

The intermediate answers may be obtained with 
memory dumps taken at various intermediate 
points, or they may be printed by instructions in­
serted in the program for the purpose. These may 
be left in the program until a final assembly, at 
which time they are removed, or they may be made 
conditional on the setting of a sense switch and left 
in the program. 

This brings up a point that should be kept in 
mind: checkout is such an important part of the 
whole process of getting a computer application 
into operation that it must be planned for in writing 
the program in the first place. The provision of 



148 IBM 1401 PROGRAMMING 

instructions to print intermediate results is only 
one example of this sort of planning. Others that 
may apply in various situations: placing all results 
in one area of storage to simplify printing; avoid­
ing "tricks" in coding that may be difficult to test; 
including comments that make it easy to correlate 
the program with the block diagram; etc. 

It is occasionally desirable to use a technique 
called tracing, which provides a listing of the in­
structions and data as each instruction in a section 
of the program is executed. This technique should 
ordinarily be used only when all else fails. When 
used indiscriminately, it can waste large amounts 
of computer time and still not provide the needed 
information. 

A variety of specialized checkout programs have 
been produced for most computers. These may do 
such things as supplying printouts of selected sec­
tions of storage during the execution of the pro­
gram, analyzing storage after the program has been 
run to print all areas that have changed since the 
program was loaded, and inserting halt instructions 
in all unused sections of storage so that the program 
will stop if it reaches an unintended location. The 
availability and operation of these programs vary 
considerably from one machine to the next. 

The final check that should be made on any data 
processing program is called pilot operation. This 
consists in using a large quantity of actual trans­
actions from a previous period. Use of actual 
transactions gives a better test for possibilities that 
may not have been considered in making up test 
cases. The results produced by the computer sys­
tem can be checked against the results produced by 
the previous manual or unit record methods. And 
since the transactions have already been processed, 
there are no business pressures to get the results out, 
pressures that would prevent careful analysis of the 
operation of the program. 

One of the major secondary benefits of pilot 
operation is that it gives personnel in the depart­
ment for which the work is being done an oppor­
tunity to see whether the program actually does 
what they intended. It is all too easy for the prob­
lem originator to say one thing and mean another, 
for the programmer to misunderstand what is meant 
by terms in an area with which he is not familiar, 
or for either one to overlook special conditions. 
The program is not actually finished until it has 
been proven to produce precisely correct results 
using real problem data in volume. 

10.5 Going Into Operation 

After a new program has been properly tested, 
some problems still remain in going into full-scale 
operation. The transition from previous manual 
or punched-card methods involves a sufficient num­
ber of people and enough changes in procedures that 
careful plans must be laid to insure that the change­
over is smooth. 

The first thing that must normally be done is to 
catch up with the transactions that have occurred 
since the new master file was created. This is also 
an excellent chance to give the program one further 
shakedown before it is required to do all the data 
processing itself. During this process a fair num­
ber of errors in the master file will be discovered. 
These may be the result of incorrect conversion or 
they may represent errors that were in the previous 
file all along and had not been detected. Actually, 
this process of file cleanup ordinarily continues into 
the first few weeks or months of operation of the 
system. 

A common practice is to continue the use of the 
the previous manual or punched-card system for 
a few weeks in parallel with the operation of the 
new electronic system. This parallel operation pro­
vides a backup in case the electronic system de­
velops difficulties that require it to be taken out of 
operation to correct. The parallel operation also 
provides an excellent test of the accuracy and ade­
quacy of electronic processing, since it is a simple 
matter to compare the results produced by the two 
systems. The processing of the transactions ac­
cumulated since the creation of the master file also 
provides a means of checking one system against 
the other. 

As we noted before, many master files are so 
large that they must be converted in segments, 
since an attempt to convert the entire master file 
at one time would result in such an accumulation 
of transactions that it would be difficult to catch 
up. One common way to effect a partial conversion 
is to break the file into segments arbitrarily on the 
basis of the keys of the records. Another possibility 
is to convert the records for which there are trans­
actions as the transactions arise. Any such partial 
conversion scheme must obviously be carefully 
planned in advance so that there will be a minimum 
of confusion between the data processing center 
and those responsible for the previous methods. 
The difficulty, of course, is that the people who 



PLANNING AND INSTALLING A COMPUTER APPLICATION 149 

have been using the old methods will in most cases 
still be heavily involved in the new system. If the 
transition is not properly carried out, these clerical 
personnel may be overloaded by having to deal 
with two systems at once. 

It is perhaps obvious that the introduction of 
various applications to be done with the computer 
should be spaced out. Any attempt to put several 
major applications in operation at one time would 
create peak loads both at the computer and in the 
rest of the organization that could very well cause 
failure of the whole system. 

10.6 Documentation 

A computer system is next to worthless if it is 
not adequately documented. To provide all of the 
information that is required for the many people 
in various parts of the company organization that 
must use the system, several different types of docu­
mentation are needed. 

One that is obviously necessary is a complete 
writeup of the program itself. This document, 
which is often called a run manual, normally con­
tains some or all of the following information: 

1. A run number and title. 
2. The name of the programmer. 
3. The date of completion of the program and of 

the last modification. 
4. A sheet summarizing the computer operating 

instructions for ready reference, including labels 
and descriptions of tapes and their disposition, error 
or special procedures, rerun instructions, average 
run time, and switch settings. 

5. A one- or two-paragraph description of the 
purpose of the run. 

6. A complete set of flow charts and block dia­
grams. 

7. Completed forms where applicable, for storage 
allocation, record designs, and operating instruc­
tions for any off-line equipment. 

8. An assembly listing of the program. Changes 
in the coding after the program has been checked 
out should be entered in red pencil, initialed, and 
dated. 

9. A sample of each report produced by the pro­
gram. 

10. Suggestions for future changes and warnings 
about making changes. 

A document of this sort is obviously necessary if 
intelligent use is to be made of the program and if 
modifications and revisions in the program are to 
be made with minimum effort. 

The programmer should prepare instructions for 
the computer operator covering machine setup, con­
sole switch settings, tape units required, carriage 
control tapes, error correction procedures, etc. This, 
of course, duplicates some of the material in the 
run book, but it should be remembered that the run 
book is too big a document to be kept at the com­
puter console. Operating instructions for all pro­
grams are generally kept in a single notebook at 
the console. 

A third type of document might be called a pro­
cedures manual. This is used by the people who 
make use of the computer, that is, the personnel in 
other departments of the company who originate 
data and use the results. Typical contents of such 
a manual are these: 

1. Exhibits of input documents, with instructions 
for their preparation and transmittal. 

2. Exhibits of output forms and reports and an 
explanation of their contents, discussion of the fre­
quency of preparation, etc. 

3. Timing schedules for data submission and 
receipt of reports. 

4. Handling of special circumstances. 

10.7 Summary 

Putting a data processing application on a com­
puter involves a number of steps, carried out at 
various levels of the organization by many different 
people. It begins with a study of what the data 
processing needs are and of alternative ways of 
solving them. After it has been established that a 
particular computer is to be ordered, much work 
must be done in deciding just how to go about 
splitting up the company's data processing require­
ments into manageable pieces that can be set up 
on the computer. After this has been done, the 
general characteristics of each computer run, in­
cluding file and record formats, must be planned. 
Only at this point is it possible to write computer 
instructions. When instructions have been written, 
the accuracy of the program must be verified. The 
file conversion and the start-up of the application 
both require considerable planning. To this list 



150 IBM 1401 PROGRAMMING 

should be added such activities as planning for the 
physical installation of the computer, the training 
of the people to program and operate it, indoctri­
nation of the people in other departments of the 
company who will make use of the services of the 
computer, and an education program to introduce 
the computer to the entire company in a way that 
will minimize ever-present fears about job security. 

It must be admitted that in this complete list the 
subject of coding, which we have discussed in this 
book, is only one part, representing less than a 
majority of the time required to get into operation. 
The person who expects to be working closely with 
computers nevertheless needs to start his education 
with the subject of computer coding or program­
ming, for without this knowledge a proper grasp of 
the more advanced subjects cannot be gained. Still, 
it should be realized that the area we have intro­
duced in this book is only the beginning and that 
the person who expects to be a truly professional 
computer expert has a number of years of ap­
prenticeship and study before him. 

EXERCISES 

1. The block diagram and program of this section 
contain a questionable procedure: the reorder calculation 

is made after every transaction. If there are several 
issues for one part, it could easily happen that we will 
punch many order recommendations, which is at least 
pointless and perhaps confusing. Modify the block dia­
gram so that the reorder calculation is made only when 
all transactions for a part number have been processed. 

2. You are given a master payroll tape for a payroll 
of 4000 hourly workers. Each record contains a payroll 
number in positions 1 to 5, an hourly pay rate of the 
form x.xxx in positions 22 to 25, and other information 
totaling 200 characters. You are also given a cost ac­
counting tape containing one record of 80 characters for 
each of 800 active jobs in the company. Each record 
contains a job number in 6 to 9, a total-to-date cost in 
dollars in 49 to 54, and other information. 

Each week there are about 40,000 labor voucher cards 
giving payroll number in 1 to 5, hours worked to tenths 
of an hour in 6 to 8, and a job number in 9 to 12. 

You are required to prepare a weekly labor distribution 
report showing, for each job on which work was per­
formed this week, the total direct labor cost for the 
week; the cost accounting tape must be updated to in­
clude this week's direct labor cost; for each man, a card 
must be punched to show gross pay for the week. 

a. Draw a flow chart of the computer and punched­
card operations necessary to satisfy these requirements. 

b. Draw a block diagram of the two computer runs 
required to get gross pay and to produce the labor dis­
tribution report. 

c. Write programs corresponding to the block dia­
grams. State any additional assumptions that must be 
made to carry out these operations. 

\. 



11. ADDITIONAL PROGRAMMING 
METHODS 

11.1 Introduction 

The presentation of computer coding and 
programming in this book has been based 
primarily on the use of the Symbolic Pro­
gramming System and Autocoder, in the in­
terest of a unified presentation. The reader 
should realize, however, that there are many 
other programming techniques and systems 
that serve many of the same purposes as 
SPS and Autocoder, namely, to reduce the 
work of initial programming and to simplify 
program modification. These other systems 
also sometimes help to take advantage of 
special conditions and to handle other types 
of problems than have been illustrated here. 

In other words, SPS and Autocoder are 
good and are heavily used, but they are not 
the whole story. In this rather brief section 
we shall investigate a few additional methods 
of which the reader should be aware. The 
discussion gives only a quick introduction 
to the various topics; various other publica­
tions are available for the reader who wishes 
more complete information. . 

The topics to be considered are the use of 
decision tables in system design, the FOR­
TRAN coding system for scientific and engi­
neering problems, the Report Program Gen­
erator for the production of programs to 
write reports, and the COBOL coding sys­
tem, which is a sophisticated coding language 
for expressing data processing procedures. 
No attempt will be made to evaluate these 
advanced programming languages because 
the whole subject is under such intensive de-

velopment at the present time that any 
evaluation would soon be out of date. 

11.2 Decision Tables 

Before any coding can be done on a prob­
lem, there must be a precise definition of the 
procedure to be followed. As we have seen, 
this definition of the problem and procedure 
can easily require more effort than the cod­
ing and checkout which follow, and the effort 
is usually at a more sophisticated level. As 
with any other activity, this work, which is 
called systems design, requires methods of 
representing the actions to be carried out 
and the conditions under which they are to 
be done. In this book we have used two 
techniques for this purpose: narrative de­
scription and flow charts. Various other 
methods of describing the work are employed 
occasionally. 

Another method that is coming into promi­
nence is the use of decision tables. A de­
cision table is a rectangular array of boxes, 
organized to describe a decision system in­
volving many variables and many results. 
The basic arrangement of a decision table is 
shown in Figure 11.1, where we see that a 
horizontal double line separates conditions 
above from actions below and a vertical 
double line separates the stub on the left 
from the entries on the right. The stub con­
tains the descriptions of the conditions and 
actions for each row of the table. Figure 11.2 

151 



152 IBM 1401 PROGRAMM1NG 

Condition 
stub 

Action 
stub 

Condition 
entry 

Action 
entry 

Figure 11.1. Schematic diagram of the parts of a decision table. 

is a simple example of a decision table which de­
scribes the decisions in one section of the inventory 
control case study of Chapter 10. 

The basic idea of using a table is to inspect the 
decision parameters, one column at a time, until a 
column is found in which all the conditions are 
satisfied. When this occurs, the actions contained 
in that column are to be carried out. If a condition 
entry is blank, then that condition has no bearing 
on deciding which rule (column) is to be followed. 
For instance, if the transaction is an order, we do 
not care whether the transaction quantity is more 
or less than the quantity on hand. If an action 
entry is blank, then no action is required for the 
operation named in the action stub for that row. 
For instance, there is no quantity shipped in this 
example except on an issue. 

At the end of the table is ordinarily a line stating 
where to go if the table cannot be solved, that is, 

Transaction Type Issue Issue 

Transaction Quantity ::; QOH >QOH 

QOH = QOH - TQ 0 

QOO = QOO QOO 

Quantity Shipped = TQ QOH 

GO TO Extend Shortage 

If unsolvable, go to CODE-ERROR 

if no column's conditions are satisfied by the input. 
Following this is the name of the table which 
normally should be solved next. If the choice of 
the next table depends on decisions in the body of 
the table, as in this example, a separate row can be 
set up to determine this branching. 

Even in a simple example like this it may be 
seen that a decision table provides a clear picture 
of the relationships between conditions and actions 
and of the interrelationships of combinations of 
conditions. The technique has the added advantage 
that omissions are explicitly indicated, leading to a 
complete statement of the procedure early in the 
planning. 

The decision table concept is much broader than 
this example might indicate, extending to such 
diverse areas as tape processing logic, accounting 
procedures, manufacturing operations, routine engi­
neering decisions, and the writing of utility routines. 
Furthermore, the decision table concept is not 
limited to providing insights into the logic of a 
system. A suitably standardized form of decision 
table is also feasible as a source language for de­
scribing data processing procedures to a computer. 

11 .3 The FORTRAN Coding System 

FORTRAN is a source program language for 
expressing problems in science and engineering, to­
gether with a processor that translates the source 
program statements into an object program that can 
be run on a computer. In contrast with SPS, the 
source program language has virtually no relation 

Recipt Order Adjustment 

QOH+TQ QOH TQ 

QOO - TQ QOO +TQ QOO 

Reorder Reorder Reorder 

Figure 11.2. Decision table to describe an inventory control procedure. 



to the object program language. In fact, the FOR­
TRAN user need not even know how the computer 
operates in order to write a program. 

An example shows the broad outline of the lan­
guage. Suppose that an engineer wishes to find the 
current flowing in an a-c circuit, for frequencies 
between 1000 and 2000 cps, in steps of 50. Assume 
that the circuit and the operating conditions are 
such that the current is given by the formula 

E 
I = -,.=========:: 

fR2 + (271'FL __ 1_)2 
~ 271'FC 

where I = current, amperes 
E = voltage, volts 
R = resistance, ohms 
L = inductance, henrys 
C = capacitance, farads 
F· = frequency, cycles per second 

ADDITIONAL PROGRAMMING METHODS 153 

It is possible, of course, to program this calcula­
tion for a computer that uses machine language 
instructions, and a great deal of work of this type 
has been done in recent years. However, doing so 
requires the engineer to know how to program and 
involves many computer considerations that really 
have nothing to do with the problem being solved. 

FORTRAN makes it possible to state the pro­
cedure to the computer in a style that closely re­
sembles ordinary mathematical notation and that 
requires virtually no computer knowledge. The 
program for this computation is shown in Figure 
11.3. 

It may be seen that variables are given names in 
the same general fashion as in SPS. In this pro­
gram we have used the units in which the quantities 
are expressed as their names. 

The READ statement calls for the four data 
values to be read from a card. The next statement 

FORTRAN CODING FORM 
Program 
Coded By 
Checked By 

~ C fOR COMMENT 

STATfMINT 'i 
NUMUR ~ 

• 5 6 7 .0 

REA 0, 

eye LIE 

'5 20 

V 0L.T 0HIM 

= 11000. I 

Identification 
I! I I! !! I 

73 80 

FORTRAN STATEMENT 
25 30 35 All .5 

H EIN RY IF A R A 01 , , 
, I I , , 

39 AMP = IV 0 L T 1.5 Q RTF I{ " H M* * 2 T ( 6 • 28* elY e L E * HEN RY - I 

Oate _____ _ 
Page __ of __ _ 

50 55 60 65 70 n 

L I I I 

I I , I I 

• I ( 6 • 2 8 * eye L E 1* FAR AD) ) * *" 2 ) 

P RI NT. V0 L T , t>HM, HEN R Y ,. FAR AID' e y.e L E , AMP I I 

I F ( c ,Y e L E .- 2000. ) 50, 401, 40 , 
• I • 

, 
• 

50 eYe L,E = elY e L E 1+ 50'1 , I I , I , I I I 

Gt> T,0 39 , I I , , , i I I , 1 I 

40 5 T t> PI , I I I L • • I I , I I 

EN 0 • I I I , , I I I I I 

I • I I I I , I , , 
I I , I I I I I I I I I 

I I , 
• I I I I 

I I , , , I I I , I I 

I I I I I , , " , I 

I I I I I I 1 I . I 

I I , , I I • I I r' I I • 
I I I , I I I , I I I I 

, , I I I I I I I I I 

I , , , , I , , I I I I I 

, I I I I I , 
• I I I , I I 

I I I , , I , I , I I I I 

Figure 11.3. A FORTRAN program. 



154 IBM 1401 PROGRAMMING 

establishes 1000 as the initial value of the frequency. 
Statement 39, which is given a statement number 
because it will be necessary to return to it, calls for 
the actual computation. We note here the use of 
symbols to specify arithmetic operations, according 
to the convention: 

Addition + 
Subtraction 
Multiplication * 
Division / 
Exponentiation ** 

We see also that the square root is called for 
simply by writing the name SQRTF. When the 
FORTRAN processor encounters this function 
name, it will incorporate into the object program a 
routine to take a square root. The FORTRAN 
programmer never has to know how to write the 15 
machine language instructions by which square 
roots are usually computed or even to know what 
the method is. 

The PRINT statement leads to object program 
instructions to print the input data and the results. 
The next statement is the FORTRAN equivalent 
of a conditional branch. The effect, in this case, is 
this: if the frequency is less than 2000, go to state­
ment 50 where we set up the next value of the fre­
quency, but if the frequency is equal to or greater 
than 2000 go to the STOP statement. Statement 
50 is another example of an arithmetic formula 
statement. This is not an equation, obviously, but 
rather a command to FORTRAN: replace the value 
of the variable named on the left with the value of 
the expression on the right. The GO TO 39 creates 
in the obj ect program a simple unconditional 
branch. 

FORTRAN is an example of a procedure-oriented 
language; that is, the language is used to write a 
problem-solving procedure in terms of the method 
to be followed. As we shall see, COBOL is also a 
procedure-oriented language. This is in contrast 
to programming systems such as SPS, where the 
procedure must be described more in terms of the 
machine operations to be executed and which are 
therefore called machine-oriented languages. Pro­
cedure-oriented languages have a number of ad­
vantages. 

1. They are generally somewhat easier to learn 
and use than machine-language coding systems. 
The beginner does not have to know anything about 
how the machine operates in order, for instance, to 

take a square root: he simply writes SQRTF. This 
advantage should be kept in perspective, however. 
It must be remembered that getting a problem 
solved with a computer involves many activities 
besides coding. The use of a language like FOR­
TRAN or COBOL in no way reduces the careful 
planning that must go into getting a correct prob­
lem statement, determining the best approach to 
the solution, planning a thorough set of test cases, 
or documenting the program. What FORTRAN 
does is to simplify the job of coding so the program­
mer can concentrate on these other things. 

2. Program modifications are easier to make be­
cause of features designed into the language. In 
the case of COBOL modifications are easier be­
cause the description of the procedure is kept rigidly 
separate from the description of the data; this 
means that one can be changed without having to 
rewrite the other. 

3. The procedure statements are to a large extent 
independent of the machine on which the object 
program will be run. The FORTRAN program in 
Figure 11.2, with a few modifications, can be com­
piled and run on anyone of a dozen or more differ­
ent computers. The object programs for the various 
machines would be very different, but the source 
program is largely independent of this fact. 

FORTRAN has the desirable characteristic that 
it is attractive both to beginner and expert. To the 
beginner, FORTRAN offers the advantage of ease 
of learning and the quick solution of simple prob­
lems. To the expert, it offers faster coding, ease of 
modification, and machine independence of the pro­
cedure statements. 

11.4 The Report Program Generator 

The desirability of simpler ways of programming 
is, of course, not restricted to scientific computa­
tions. The Report Program Generator is one of 
several systems that provide much the same ad­
vantages for commercial data processing that FOR­
TRAN does for scientific work. Using this system, 
the source language user once again does not have 
to know much about machine language coding. The 
procedure is stated on four types of forms which 
provide answers to the following questions: 

1. What are the characteristics of the file from 
which the data to appear in the report is obtained? 



ADDITIONAL PROGRAMMING METHODS 155 

2. What type of information is to be extracted 
from the file and from what records may these 
source fields be obtained? 

4. What will be the format of the report? What 
headings and constants must it contain? How 
should the data composing the report be edited? 

3. What type of calculations are to be performed 
during the execution of the object program and 
how are the results of these calculations to be 
manipulated? 

These questions naturally must be answered in 
setting up any program. Using the Report Gen­
erator, however, the answers are presented to the 
computer on four types of forms that require no 

IB)! 

~ " 
~ H32.HBI Z" :: 

~ H3 Hal :: 
~ H3 .HM " 
-: U~ .HIJ'I 11 
II HJ 11 

i Z; 3" 11 

()()/ 
TI " /J 

r21 ." .. 
" r.I, 

1401 DATA PROCESSING SYSTEM SPACING CHART 
1403 PRINTER 

'Ob.12u.Q6.0 
NINUD IN US.A 

o 1 2 3 I 4 5 6 7 8 9 I 10 11 12 13 c-='"' 
123456,71 01 3456719G123 5671901 456719012H 7,0' 789 12345H19012HU7190123 567 012'345 7 9012345671901,2356719'0123456719012 _ 

IV," 

" H 

i~~~~~~~~/~S~"~~~12~3~45~6~7~~~5~'6~9$1~2~6¢7~19$0~1~$6~7~0~1~~~~~7~1~1~~~~~~~~~~~~~~~~~~~~~4~~7~~ 
_ _ IS~ 

Figure 11.4. Report Program Generator layout form. 

0 0 0 

XZ9-tlJ6 

IB:M 1401 REPORT PROGRAM GENERATOR 
Report MONTHLY EXPENSE DISTRIBUTION REPORT INPUT SPECIFICATIONS 

Page I~I;) ofQL 
Programmed by Dote 

RECORD 
~QUENCE RECORD CODES CONTROL FIELDS 

::t st s~ ~t :~ ::f ~I~ 
FIELD 1 FIELD 2 FIELD 3 FIELD 4 FIELD !S FIELD 6 CARD 

C m, !a..POSITlOI '8POSIT~1 ~ 051110 ~PO~TIOI ~POSITION ~ 0511101 :; ~ ~ i 
lum. 

i!i 0 

C C C ; c ::: 
'" 45 •• 1101 112 14 ISIS 1718 20 to 4 • 70 12030 " 3536 38 3' 12~ .. ~ 4 14'49 'I 253M &6 ~a 9 '16f~ ... ~. 07~0 69 7172 ..... 7 473170 oc 
CBBI 053 NZ -OBO 04 01035 03 032 03 03B 03 010 
C BB I 053 C OBO 04 02035 03 032 03 03, e 03 020 
C B B I 053 CJ080 04 03035 03 032 03 038 03 030 
C B B I 053 CK080 04 04035 03 0,32 03 038 03 040 
C A A I 080N 04 05 o !S,C - L-- "--... ~~ -- -- V - -." 

Figure 11.5. Report Program Generator input specifications form. 



156 IBM 1401 PROGRAMMING 

computer knowledge to fill out; the generator then 
takes over and produces an object program. The 
four forms are shown in Figures 11.4 through 11.7. 

on a printer: a sales summary, a payroll check, an 
earnings statement, an invoice, a customer bill, etc. 

This system applies to any task that involves 
extracting information from a file, summarizing it, 
performing calculations on it, editing it, and print­
ing the results. For the purposes of this discussion, 
a "report" is just about anything that can be printed 

11.5 The COBOL Programming System 

L---- _ 

COBOL, which stands for Common Business 
Oriented Language, is a procedure-oriented lan-

o o o 

IB,., 1401 REPORT PROGRAM GENERATOR 

Report INVOICE EXAMPLE 

Programmed by 

FORMAT SPECIFICATIONS Page I?J~ of _0_5 __ 
Date, ______ _ 

CONSTANT OR EDIT CONTROL WORD LINE OUTPUT FIELD OUTPUT 
CONDITIONS CONDITIONS 

A
l lA FIELD FIEL[ I I ~ 

~ ~ ~ NAME END A A '" FIELD g ~ ~ ~ ::; _ CONDo ~ CONDo ~ CONDo CONo.~ COND.~ CONDo ~ LENCTH 

e 9 10 II 1213 14" '617 I' 19 0 22] 2' 6 21 \29 34P5 3'1 311 4( 41 .. 44 4~ ~ II S I 

CARD 
~UMBER 

70 71 II< 

~ LINE ~UTP\JT ~f:: SPACE SKIP 

R 

~~;h~ 
I 1 3 .. 5 8 

8 ITEMN<2I012 010 

8 DESCRI 048 I I o 20 

8 QUANTY 055 Z I I o 3 0 

8 I IME AS U R 060 I I I 040 

8 PRICE 068 006 b bOb bib 050 

8 I I I AM<2IUNT 081 I 008b,bbO.blb 060 

LT2IX I 011 FI2 I I I I I I I I I I I 070 

K 049 007IINVlbT0T I 080 

8 T0TAMT 082 _I I I 090 

LHAAX I 01 04 0F I I I 100 

F S<2ILDT0 024 I I II I I I I 10 

F NUMBER 074 I I I I" I I I I I I 120 

F PAGEN0 078 I I I I I II I I 30 

LTAAXX 04 4 LC I I II I I I 140 

F OAT E 057 I Z I I I I II I I I I 50 

K I 042 00 7 F I NIb T 0 T I I 160 
F I FIN A L 078 I 017$bbbl.bbb.bbO.bb~HE I 70 

'-- L I I I --j....--"" -----.. -...... ~ 

Figure 11.6. Report Program Generator output specifications form. 

o o o 

IB,., 1401 REPORT PROGRAM GENERATOR 
Report _________ _ CALCULATION SPECIFICATIONS Page-Y.J.-of __ _ 

Programmed by 

FIELD STATUS FACTOR I I ~ FACTOR 2 ~ I It... t;; 

FIELD ~~ ==~ + :z::~ :+ A A ~ ~ 
A NAME g~jdl~~~~ .. ~~~~ MULTIPLICAND ~~;e X MULTIPLIER ~~~£: CDRD.N CONO. N CORD. ~ i!5 ::. ==:: =~:: =~ A~I~~~~.R~R I:=::::~ / A~ri~~S~~R 4:~~ 0 0 0 ~ ~ ~ 
I 2 78 I 11121314 51617181920 MINUEND 25 6 282930 SUBTRAHOC0 3 36 383940 42 3 45 6 4E 4 0515253 4 

I 

I T 

Date ______ _ 

CARD 
NIJIIBER 

o 10 

o 2 0 

o 30 

040 

Figure 11.1. Report Program Generator calculation specifications form. 

-

t' 



'J 

guage for stating procedures in business data proc­
essing. As such, it shares the advantages of pro­
cedure-oriented languages stated above in connec­
tion with FORTRAN. 

A COBOL source program is composed of three 
sections: 

1. Procedure division: the procedure statements 
that specify how the data is to be processed. 

2. Data division: description of the format and 
organization of the data and results. 

3. Environment division: a description of the 
equipment to be used by the object program. 

These three divisions are separated in writing the 
source program, which leads to one of the major 
advantages of COBOL and languages similar to it: 
changing the procedure does not require changing 
the data descriptions and vice versa. Considering 
that in most programs for commercial data process­
ing the object program and the data arrangement 
are strongly interrelated, this becomes a sizable 
advantage. In the frequent situation where the 
data arrangement must be changed slightly, it is 
necessary only to modify the data division and 
recompile. This is in contrast to the situation with 
actual machine language coding, for instance, where 
in extreme cases a single added digit in the data can 
force reprogramming most of the problem. 

The independence of the procedure and data 
divisions leads to another major advantage of 
COBOL, which is also shared with FORTRAN and 
a number of other systems: machine independence. 
With rather minor changes, a COBOL source pro­
gram can be compiled for running on any computer 
for which a COBOL processor exists. The data 
division does depend somewhat on the object ma­
chine, to take account of such machine character­
istics as variable versus fixed word length, the 
handling of signs, and tape formats. It usually 
turns out, however, that changing the data division 
is far less work than rewriting the whole program, 

ADDITIONAL PROGRAMMING METHODS 157 

and the relative machine independence is in fact 
achieved. 

Procedure statements in COBOL are written in 
a form closely paralleling ordinary English con­
struction. In fact, a completed COBOL program 
can in some cases be read like an English descrip­
tion of the procedure. There is, however, very little 
flexibility in the way the "sentences" can be written. 
English language readability is an advantage of 
COBOL, but a secondary one. 

11.6 Fundamentals of COBOL 
Programming 

To give a little better appreciation of what pro­
gramming is like when these advanced tools are 
used, we shall take COBOL as a representative 
example and consider it a little more fully. This 
is done first with a series of short examples that will 
introduce the fundamental ideas, and then the in­
ventory control of Chapter 10 will be rewritten in 
COBOL. 

The central feature of a, billing procedure is the 
multiplication of unit price by the quantity sold. 
To do this, a sentence in a COBOL program could 
be as shown in Figure 11.8. In this sentence the 
word MULTIPLY is a verb. The sentence, further­
more, is imperative. When the COBOL processor 
translates it into actual machine instructions, it 
creates the instructions necessary to bring about 
the action specified by the verb. 

As can be seen in the example, a COBOL sentence 
is very similar to an ordinary English statement in 
construction and format. Actually, the parallel 
extends to some aspects of punctuation. A COBOL 
sentence must always end with a period. Data is 
referred to by name, such as "TOTAL-PRICE." 
We note immediately an exception, however, in that 
words which are to be considered as combined in 
one name must be hyphenated because in COBOL 

01 MULTIPLY UNIT-PRICE BY QUANTITY GIVING TOTAL-PRICE. 

Figure 11.8 

01 REORDER-ROUTINE. IF QUANTITY-ON-HAND IS LESS THAN 

02 MINIMUM THEN MOVE ORDER-QUANTITY TO PURCHASE-AMOUNT. 

Figure 11.9 



158 IBM 1401 PROGRAMMING 

Yes 
THEN ••• 

No 

Figure 11.10 

a blank space always indicates the beginning of 
a new word. Furthermore, although it is not ap­
parent from this one example, the structure of a 
COBOL sentence must follow very precisely the 
rules laid down in the COBOL manual. It would 
not be possible to rewrite this sentence as THE 
TOTAL PRICE IS COMPUTED BY MULTI­
PLYING UNIT PRICE AND QUANTITY. This 
would be the English language equivalent, but 
COBOL would not accept such a sentence. We 
shall not attempt to give the precise rules for form­
ing each type of COBOL sentence; this information 
may be obtained readily enough from a COBOL 
manual. 

For a second example, consider a part of an in­
ventory calculation. One sentence of the COBOL 
procedure for determining whether to place an order 
might be as shown in Figure 11.9. The first word 
"REORDER-ROUTINE" is called a procedure 
name. A procedure name provides a way of refer­
ring to the sentences that follow. 

The sentence illustrates a conditional expression 
involving a simple relation between two quantities. 
If the quantity on hand is less than the reorder 
point, the action specified following THEN is car­
ried out. If the quantity on hand is not less than 
the reorder point, the action following THEN is 
not carried out. Figure 11.10 shows in schematic 
form the structure of this sentence. A conditional 
cla,use, which is introduced by the word IF and con­
cluded by THEN, in effect asks a question to which 
the answer must be yes or no. We shall speak of 
each relation involved in a conditional expression 
as being true or false, or satisfied or not satisfied. 
This example uses the IS LESS THAN relation. 
The allowable relations in COBOL language are 

The example in Figure 11.9 also shows a different 
command, MOVE TO. The action called for is the 
copying of information within storage. The infor­
mation named ORDER-QUANTITY is to be copied 
and called PURCHASE-AMOUNT. 

It is probably apparent by now that certain words 
have special meanings in COBOL language: in the 
present examples, the words IF, THEN, MOVE, 
and TO and the phrase IS LESS THAN all have 
special meaning, and confusion would result if we 
tried to interpret these words in any other way. 
Such words are a fixed part of the language and are 
called reserved words. A complete list of the re­
served words in COBOL language may be found 
in a COBOL manual. Reserved words must not be 
used to mean anything but what COBOL defines 
them to mean. 

To introduce a few more features of COBOL 
language, we may use a common payroll example, 
as shown in Figure 11.12. 

The conditional clause in this example is differ­
ent from what we have seen previously. The first 
part of the clause consists of just the word 
HOURLY, which is called a condition name. 
HOURLY is one of the possible values that can be 
taken on by the implied data name PAYROLL 
TYPE, the other values being EXEMPT, SALA­
RIED, and TEMPORARY. Since there are only 
a few of these conditions, it is convenient for the 
programmer t.o use his normal terminology. The 
actual machine instructions are set up to work with 
the coded representation of these values; for in­
stance, the numbers 1, 2, 3 and 4. Some way must 
be provided to correlate the condition names with 

Long Form 

IS EQUAL TO 
IS NOT EQUAL TO 
IS LESS THAN 
IS NOT LESS THAN 
IS GREATER THAN 
IS NOT GREATER THAN 

Short Form 

EQUAL TO 
NOT EQUAL TO 
LESS 
NOT LESS 
GREATER 
NOT GREATER 

shown in Figure 11.11. Figure 11.11 

01 IF HOURLY AND HOURS-WORKED IS LESS THAN 40 

02 THEN GO TO GROSS-PAY, OTHERWISE GO TO NET-PAY. 

Figure 11.12 

\' 



'i 

the corresponding values. Establishing this cor­
respondence is one of the many functions of the 
data division. Figure 11.13 shows the appropriate 
part of the data division to establish this corre­
spondence. 

PAYROLL TYPE is defined as a level 3 entry, 
which indicates its relative importance with respect 
to other elements of data. EXEMPT SALARIED , , 
HOURLY, and TEMPORARY are named as the 
four conditions, and the code number used for each 
is given. Thus in this example the value of PAY­
ROLL TYPE is 3 whenever HOURLY is meant. 

The second part of the conditional clause is 

HOURS WORKED IS LESS THAN 40 

In this case the value of the data name HOURS 
WORKED is compared with the number 40; 40 is 
not to be interpreted as a data name but literally 
is the value of 40 itself. We speak of 40 as a 
numeric literal. 

The second part of the conditional clause is joined 
to the first part by the reserved word AND, which 
specifies that both the first and the second parts of 
the clause must be satisfied before carrying out the 
operations that follow THEN. This is shown sche­
matically in Figure 11.14, which emphasizes that 
both parts of the conditional clause must be true 
before carrying out the action specified after 
THEN. If either or both of the parts is false, the 

01 3 PAYROLL-TYPE 

02 

03 

04 

05 

88 EXEMPT VALUE IS 1 

88 SALARIED VALUE IS 2 

88 HOURLY VALUE IS 3 

88 TEMPORARY VALUE IS 4 

Figure 11.13 

ADDITIONAL PROGRAMMING METHODS 159 

THEN ... 

'--____ ---L. __ ---+-I OTHERWISE ••• 

Figure 11.14 

action specified after OTHERWISE is executed. 
If the sentence is written without the word OTHER­
WISE the program continues with the following 
sentence. 

In the COBOL sentence under consideration the 
action specified after both THEN and OTHER­
'VISE is a new command, GO TO. The GO TO 
command makes it possible to get out of the one­
after-the-other sequential execution of sentences 
and instead execute next the sentence named by the 
GO TO. 

The fourth example is based on a part of an in­
ventory control calculation. Assume as we have 
previously that there are just four types of trans­
actions-recounts, receipts, orders, and issues. The 
part of the job that we wish to consider is how to 
take action appropriate to the type of transaction. 
The program shown in Figure 11.15 is a little longer 
than those preceding but most of the ideas are al­
ready familiar. 

The first line of this program brings into play a 
processor command: 

NOTE INVENTORY RECORD 
MAINTENANCE 

NOTE indicates that what appears in the rest of 
the sentence is information for the reader of the 
program; it is not for the COBOL processor, which 
ignores it. The programmer is permitted and en­
couraged to use notes freely in order to make the 

01 NOTE INVENTORY RECORD MAINTENANCE 

02 GO TO (RECOUNT-ROUTINE, ORDER-ROUTINE, RECEIPT-PROCEDURE, 

03 ISSUE-PROCEDURE) ON TRANSACTION-CODE. 

04 ISSUE-PROCEDURE. SUBTRACT TRANSACTION-QUANTITY, 

05 QUANTITY-ON-HAND. PERFORM REORDER-CALCULATION. 

06 GO TO NEXT ITEM. 

Figure 11.15 



160 IBM 1401 PROGRAMMING 

program more intelligible to the reader. These play 
the same part as the comments in SPS and Auto­
coder programs. 

The GO TO shown on the second line is a more 
powerful form of the command than we have seen 
before. This is called an assigned GO TO. For 
anyone transaction, only one of the four procedures 
named in parentheses is performed. The one 
selected depends on the current value of the trans­
action code, which can be 1 to 4. These numbers 
correspond to the names within the parentheses. 
If the value is 1, the first name is selected, etc. 
This is summarized in Figure 11.16. 

An assigned GO TO provides a multiple branch 
or switching point. The last two lines of Figure 
11.15 illustrate another COBOL verb, namely, 
SUBTRACT. The SUBTRACT verb may also be 
used in this form: 

SUBTRACT TRANSACTION-QUANTITY 
FROM QUANTITY-ON-HAND GIVING 

QUANTITY-ON-HAND 

In the condensed form used in Figure 11.15 the 
meaning is exactly the same; that is, the value cor­
responding to the first data name is subtracted from 
the value corresponding to the second data name. 
These are the only two ways the SUBTRACT verb 
may be used. 

The last line in Figure 11.15 shows another type 
of transfer of control: 

PERFORM REORDER-CALCULATION 

If the current value of 
TRANSACTION-CODE is 

1 

2 

3 

4 

The PERFORM verb may be thought of as 
meaning "go to the place named, do whatever it 
says to do, and come back." In our case it is used 
to transfer to a procedure named REORDER­
CALCULATION and to set up a return path so 
that, after executing the procedure, control will 
return to the sentence immediately following PER­
FORM. PERFORM thus provides the facilities 
for a subroutine linkage. After performing the re­
order .calculation, control will return to and execute 
the GO TO NEXT ITEM sentence in Line 6. 

As another illustration of the use of COBOL we 
may use a savings bank procedure: updating an 
account record to indicate interest payment. The 
program might be as shown in Figure 11.17. Line 1 
again shows the use of a procedure name to provide 
a named point to which the program can transfer. 
In this case it precedes a slightly different type of 
conditional clause. Instead of simply comparing 
two values as we have before, the programmer has 
indicated that he wishes to see if the value of an 
arithmetic expression (.03* PRINCIPAL) is less 
than a numeric literal (1.00). The asterisk is used 
to indicate multiplication. It is quite valid to in­
corporate an arithmetic expression within a condi­
tional expression. For clarity it may often be de­
sirable to use parentheses to denote the beginning 
and end of such an arithmetic expression. 

There is one other new point to notice in this ex­
ample. On Lines 4 and 5 we have 

MOVE "INTEREST" TO ACTION 

Then GO TO: 

RECOUNT-ROUTINE 

ORDER-ROUTINE 

RECEIPT-PROCEDURE 

ISSUE-PROCEDURE 

Figure 11.16 

01 INTEREST -CALCULATION. IF .03* PRINCIPAL IS LESS 

02 THAN 1.00 THEN GO TO END OTHERWISE MULTIPLY 

03 PRINCIPAL BY 1.03 GIVING ACCOUNT BALANCE, 

04 MOVE 'INTEREST' TO ACTION. 

Figure 11.17 

I' 



The quotes indicate that the word INTEREST 
itself is to be moved to the area name ACTION. 
Thus INTEREST is identified by the quotes as 
being an alphameric literal. 

There are six verbs that handle all of our input­
output problems. In terms of the 1401, the verb 
ACCEPT calls for data to be read from cards. 
This would normally be written in the form AC­
CEPT data-name FROM CARD READER, where 
we would write the name of the card record for the 
data-name. Printing and punching are handled 
by the DISPLAY verb. Here, we write the word 
DISPLAY, followed by the names of the data to 
be printed, followed by the word UPON, followed 
by the word PRINTER or CARD PUNCH. 

The verbs OPEN and CLOSE have the same 
meanings that they have in the Autocoder Input­
Output Control System. That is, OPEN checks 
labels and positions tape to read the first tape block. 
CLOSE handles the trailer label and rewinds the 
tape. 

The COBOL equivalent of the IOCS GET is 
called READ and performs exactly the same func­
tions; that is, it makes available an input record 
either by advancing to a new record if records in 
the block remain to be processed or by actually 
reading a tape block if all records in the input area 
have been processed. The routine compiled from 
the READ verb performs the same error checking 

ADDITIONAL PROGRAMMING METHODS 161 

and checks for the end of the file. vVe specify in 
the source program what should be done if the end 
of the file is reached by writing the words AT END, 
followed by any imperative statement. 

The COBOL equivalent of the IOCS PUT is 
called vVRITE and performs the same function. 
Weare not required in using READ and WRITE 
to determine whether the object program will use 
indexing or a work area and similar matters. All 
such considerations are handled by the COBOL 
processor. 

Examples of these verbs appear in the program 
of the next subsection. 

This has by no means been a complete exposition 
of the COBOL language. It is hoped, however, 
that this discussion, together with the extended 
example that follows, will provide some insight 
into the nature of COBOL programming and its 
advantages. 

11.7 COBOL Program for Inventory 
Control Case Study 

Figure 11.18 is a COBOL program to carry out 
the operation described in the block diagram of 
Figure 10.1. Since the program is written in Eng­
lish it is largely self-explanatory. 



162 IBM 1401 PROGRAMMING 

01 PROCEDURE DIVISION. " 
02 OPEN INPUT OLD-MASTER-FILE, OUTPUT NEW-MASTER-FILE. 
03 ACCEPT TRANSACTION-CARD FROM CARD-READER. 
04 MASTER-READING. READ OLD-MASTER-FILE RECORD AT END GO TO 
05 WRAPUP-TEST. 
06 COMPARISON. IF PART-NUMBER OF OLD-MASTER IS GREATER THAN 
07 PART-NUMBER OF TRANSACTION-CARD GO TO WRAPUP-TEST. 
08 IF PART-NUMBER OF OLD-MASTER IS EQUAL TO PART-NUMBER OF 
09 TRANSACTION-CARD GO TO CODE-TESTING-ROUTINE OTHERWISE 
10 GO TO MASTER-WRITING. 
11 CODE-TESTING-ROUTINE. GO TO RECOUNT, RECEIPT, ORDER, ISSUE 
12 DEPENDING ON TRANSACTION-CODE. MOVE 'BAD CLASS 
13 CODE JOB HALTED' TO MESSAGE. 
14 DISPLAY MESSAGE ON PRINTER. STOP I. 
15 RECOUNT. MOVE TRANSACTION-QUANTITY TO QUANTITY-ON-HAND. 
16 GO TO REORDER-ROUTINE. 
17 RECEIPT. ADD TRANSACTION-QUANTITY, QUANTITY-ON-HAND. 
18 SUBTRACT TRANSACTION-QUANTITY, QUANTITY-ON-ORDER. 
19 GO TO REORDER-ROUTINE. 
20 ORDER. ADD TRANSACTION-QUANTITY, QUANTITY-ON-ORDER. 
21 GO TO REORDER-ROUTINE. 
22 ISSUE. IF QUANTITY-ON-HAND IS NOT LESS THAN TRANSACTION-
23 QUANTITY GO TO SUBTRACTION-ROUTINE. MOVE 
24 QUANTITY-ON-HAND TO MESSAGE-A. MOVE PART-NUMBER OF 
25 TRANSACTION-CARD TO MESSAGE-B. MOVE TRANSACTION-QUANTITY 
26 TO MESSAGE-C. DISPLAY MESSAGE ON PRINTER. MOVE 
27 TRANSACTION-QUANTITY TO QUANTITY-ON-HAND. 
28 SUBTRACTION-ROUTINE. SUBTRACT TRANSACTION-QUANTITY, 
29 QUANTITY-ON-HAND. MULTIPLY UNIT-PRICE BY TRANSACTION-
30 QUANTITY GIVING TOTAL-PRICE. ADD TOTAL-PRICE, 
31 YEAR-TO-DATE-SALES. 
32 REORDER-ROUTINE. IF QUANTITY-ON-HAND + QUANTITY-ON-ORDER 
33 IS GREATER THAN REORDER-POINT GO TO LAST-CARD-ROUTINE. 
34 MOVE PART-NUMBER OF TRANSACTION-CARD TO CARD-I. MOVE 
35 MASTER-CODE TO CARD-2. MOVE REORDER-QUANTITY TO CARD-3. 
36 DISPLAY CARD ON CARD-PUNCH. 
37 LAST-CARD-ROUTINE. IF LAST-CARD GO TO REPLACEMENT-ROUTINE. 
38 ACCEPT TRANSACTION-CARD FROM CARD-READER. GO TO 
39 COMPARISON. 
40 REPLACEMENT-ROUTINE. MOVE HIGH-VALUE TO PART-NUMBER OF 
41 TRANSACTION-CARD. 
42 MASTER-WRITING. WRITE NEW-MASTER FROM OLD-MASTER. GO TO 
43 MASTER-READING. 
44 WRAPUP-TEST. IF LAST-CARD GO TO CLOSEOUT. MOVE 
45 'FILE OR DATA ERROR JOB HALTED' TO MESSAGE. 
46 DISPLAY MESSAGE ON PRINTER. STOP 2. 
47 CLOSEOUT. CLOSE OLD-MASTER-FILE, NEW-MASTER-FILE. MOVE 'JOB 
48 FINISHED' TO MESSAGE. DISPLAY 
49 MESSAGE ON PRINTER. STOP 3. 

Figure 11.18. COBOL program for inventory control case study. 



" 

APPENDIX 1. IBM 1401 INSTRUCTIONS WITH 

SYMBOLIC PROGRAMMING SYSTEM 
MNEMONICS 

Not all of the instructions listed here have been 
discussed in the text. For those which have been 
introduced, the page number of the detailed de­
scription is given. 

where it is shown as "d," consult the appropriate 
table below for meanings. 

Where no d-modifier is shown, none is required; 

Instructions involving special features not found 
on a basic 1401 are marked with *. 

INPUT-OUTPUT INSTRUCTIONS 

Instruction 

Read a Card 
Write a Line 
Write W9rd Marks 
Write and Read 
Punch a Card 

* Read Punch Feed 
Read and Punch 
Write and Punch 

* Write and Read Punch Feed 
Write; Read, and Punch 

* Start Read Feed 
* Start Punch Feed 

Instruction 

Add 
Subtract 

Zero and Add 

Zero and Subtract 
* Multiply 
* Divide 

Actual 
Op Code 

1 
2 
2 
3 
4 
4 
5 
6 
6 
7 
8 
9 

d 

D 

R 

R 

SPS Op 
Code 

R 
W 
W 
WR 
P 
P 
RP 
WP 
WP 
WRP 
SRF 
SPF 

ARITHMETIC INSTRUCTIONS 

Actual SPS Op 
Op Code Code 

A A 
S S 
+ 

ZA 0 

0 ZS 
@ M 
% D 

d 

D 

R 

R 

Page 

36 
36 

96 
36 

97 
97 
97 

Page 

43 
44 

80 

56 

163 



164 IBM 1401 PROGRAMMING 

LOGIC INSTRUCTIONS 

Actual SPS Op 
Instruction Op Code d Code d 

Branch B B 
Branch If Indicator On B d B d 
Branch If Character Equal B d B d 

(contents of B address 
compared with d-modifier) 

Branch If Word Mark 
and/or Zone V d BWZ d 

Compare C C 

d-modifier for Branch If Indicator On Instruction 

Comparison 

Overflow 
Last card 

Sense switches 

Printer 

I/O errors 

Processor error 

Magnetic tape 

Disk file 

Blank 

{lOll 
Z 
A 
B 
C 
D 
E 
F 
G 

{f 
+ 

[~ 
% 

{~ 
V 

W 
X 
y 

N 

Unconditional 

Unequal compare: B ~ A 
* Equal compare: B = A 
* Low compare: B < A 
* High compare: B > A 

Overflow 
Last card switch 

* Sense switch B 
* Sense switch C 
* Sense switch D 
* Sense switch E 
* Sense switch F 
* Sense switch G 

Carriage channel 12 
Carriage channel 9 

* Printer busy 
* Carriage busy 

Reader error with I/O check 
stop switch off 

Punch error with I/O check 
stop switch off 

Printer error with I/O check 
stop switch off 

Processing error with process check 
stop switch off 

* End of reel 
* Tape error 
* Read/Write parity-check or 

read back check error 
* Wrong-length record 
* Unequal address compare 
* Any disk storage error 
* Access inoperable 

j' 

Page 

63 
64 

119 

67 
67 



IBM 1401 INSTRUCTIONS WITH SYMBOLIC PROGRAMMING SYSTEM MNEMONICS 165 

DATA CONTROL INSTRUCTIONS 

" Actual SPS Op 
Instruction Op Code Code Page 

Move Characters to A or B Word Mark M MCW 34 
Load Characters to A Word Mark L LCA 55 
Move Characters and Suppress Zeros Z MCS 65 
Move Characters and Edit E MCE 58 
Move Numerical D MN 
Move Zone Y MZ 
Set Word Mark SW 35 
Clear Word Mark 0 CW 35 

MISCELLANEOUS INSTRUCTIONS 

Actual SPS 
Instruction Op Code d Op Code d Page 

Control Carriage F d CC d 93 
Select Stacker K d SS d 72 
No Operation N NOP 78 
Clear Storage / CS 37 
Halt H 66 

* Store A-address Register Q SAR 
* Store B-address Register H SBR 
* Modify Address # MA 

MAGNETIC TAPE INSTRUCTIONS 

A-address is of the form % U x where x is the tape unit number 

Actual SPS Op 
Instruction Op Code d Code d Page 

Read Tape M R MCW R 107 
Write Tape M W MCW W 107 
Read Tape with Word Marks L R LCA R 
Write Tape with Word Marks L W LCA W 
Control Unit U d CU d 108 

* Move Characters to Record or P MCM 
Group Mark 

* Move and Insert Zeros X MIZ 

d-modifiers for Control Unit Instruction 

B Backspace Tape Record 
E Skip and Blank Tape 
M Write Tape Mark 
R Rewind Tape 
U Rewind Tape and Unload 



166 IBM 1401 PROGRAMMING 

DISK STORAGE INSTRUCTIONS 

A-address is of the form %FX where 

X = 0 is used with operation code M for Seek Disk 
X = 1 specifies single record 
X = 2 specifies full track 
X = 3 is used with operation code M for Write Disk Check 

Actual SPS 
Instruction Op Code d Op Code d 

Seek Disk M MCW 
Read Disk M R MCW R 
Write Disk M W MCW W 
Read Disk with Word Marks L R LCA R 
Write Disk with Word Marks L W LCA W 

Page 

126 
127 
128 -



APPENDIX 2. AUTOCODER OPERATION CODES 

DECLARATIVE OPERATIONS 

Mnemonic 
Op Code Description 

DA Define Area 
DC Define Constant (No Word Mark) 
DCW Define Constant With Word Mark 
DS Define Symbol 
DSA Define Symbol Address 
EQU Equate 

IMPERATIVE OPERATIONS 

Machine Language 
Mnemonic 

Type Op Code Description Op Code d-char. 

Arithmetic A Add A 
D Divide % 
M Multiply @ 

S Subtract S 
ZA Zero and Add & 
ZS Zero and Subtract 

Data MBC Move and Binary Code M B 
Control MBD Move and Binary Decode M A 

MCE Move Characters and Edit E 
MCS Move Characters and Suppress Zeros Z 
MIZ Move and Insert Zeros X 

MLC } 
MCW 

Move Ch8facters to Word Mark M 

MLCWA} Move Characters and Word Marks L 
LCA to Word Mark in A-Field 

MLNS} Move Single Numerical Character D 
MN 

MLZS} Move Single Zone Y 'MZ 

MRCM} Move Characters to Record Mark P 
MCM or Group Mark-Word Mark 

167 



168 IBM 1401 PROGRAMMING 

Machine Language 
Mnemonic (' 

Type Op Code Description Op Code d-char. 

Logic B Branch Unconditional B 
BAV Branch on Arithmetic Overflow B Z 
BBE * Branch if Bit Equal W d 
BC9 Branch on Carriage Channel 9 B 9 
BCV Branch on Carriage Overflow (12) B @ 
BE Branch on Equal Compare (B = A) B S 
BEF Branch on End of File or End of Reel B K 
BER Branch on Tape Transmission Error B L 
BH Branch on High Compare (B > A) B U 
BIN * Branch on Indicator B d 
BL Branch on Low Compare (B < A) B T 
BLC Branch on Last Card (Sense Switch A) B A 
BM Branch on Minus (ll-zone) V K 
BPCB Branch Printer Carriage Busy B R 
BPB Branch Printer Busy B P 
BU Branch on Unequal Compare (B ~ A) B / 
BW Branch on Word Mark V 1 
BWZ * Branch on Word Mark or Zone V d 
BCE * Branch if Character Equal B d 
BSS * Branch if Sense Switch On B A-G 
C Compare C 

I/O BSP Backspace Tape U B 
Commands CU * Control Unit U d 

DCR Disengage Character Reader U D 
ECR Engage Character Reader U E 
LU * Load Unit L d 
MU * Move Unit M d 
P Punch 4 
PCB Punch Column Binary 4 C 
R Read 1 
RCB Read Column Binary 1 C 
RD Read Disk Single Record M R 
RDT Read Disk Full Track M R 
RDW Read Disk Single Record With L R 

Word Marks 
RDTW Read Disk Full Track With L R 

Word Marks 
RF Read Punch Feed 4 R 
RP Read and Punch 5 
RT Read Tape M R 
RTB Read Tape Binary M R 
RTW Read Tape With Word Marks L W 
RWD Rewind Tape U R 
RWU Rewind and Unload Tape U U 
SD Seek Disk M 
SKP Skip and Blank Tape U E 
SPF Start Punch Feed 9 
SRF Start Read Feed 8 
W Write 2 

* d-character must be coded in the operand of the instruction. 



AUTOCODER OPERATION CODES 

Machine Language 
Mnemonic 

Type Op Code Description Op Code d-char. 

WD Write Disk Single Record M W 
WDC Write Disk Check M 
WDCW Write Disk Check With Word Marks L 

Mis­
cellaneous 

WDT 
WDTW 

WDW 

WM 
WP 
WR 
WRF 
WRP 
'VT 
WTB 
WTM 
WTW 

CC 
CCB 
CS 
CW 
H 
MA 
NOP 
SAR 
SBR 
SS 
SSB 
SW 

Write Disk Full Track 
Write Disk Full Track With 

Word Marks 
Write Disk Single Record With 

Word Marks 
Write Word Marks 
Write and Punch 
Write and Read 
Write and Read Punch Feed 
Write, Read and Punch 
Write Tape 
Write Tape Binary 
Write Tape Mark 
Write Tape With Word Marks 

* Carriage Control 
* Carriage Control and Branch 

Clear Storage 
Clear Word Mark 
Halt 
Modify Address 
No Operation 
Store A-Address Register 
Store B-Address Register 

* Select Stacker 
* Select Stacker and Branch 

Set Word Mark 

* d-character must be coded in the operand of the instruction. 

Mnemonic 
Op Code 

CTL 
END 
ENT 
EX 
LTORG 
ORG 

CONTROL OPERATIONS 

Control 
End 

Description 

Enter New Coding Mode 
Execute 
Literal Origin 
Origin 

M W 
L W 

L W 

2 0 
6 
3 
5 R 
7 
M W 
M W 
U M 
L W 

F d 
F d 
/ 
0 

# 
N 
Q 
H 
K 1,2,4,8 
K 1,2,4,8 

169 



APPENDIX 
CODES 

3. CARD AND COMPUTER CHARACTER 

Prints Defined Character Card BCD Code Prints Defined Character Card BCD Code 
As Code As Code 

BLANK C G G 1-27 BA 421 
12-3-8 BA821 H H 12-8 BA8 

0 0 12-4-8 CBA84 I I 12-9 CBA8 1 
( Left Parenthesis (Special Character) 12-5-8 BA841 - ! (Minus Zero) 11-0 B 82 
< Less Than (Special Character) 12-6-8 BA842 J J 11-1 CB 1 

* Group Mark (Note 1) 12-7-8 CBA8421 K K 11-2 CB 2 
& & 12 CBA L L 11-3 B 21 
$ $ 11-3-8 CB 8 21 M M 11-4 CB 4 

* * 11-4-8 B 84 N N 11-5 CB 4 1 
) Right Parenthesis (Special Char.) 11-5-8 CB 84 1 0 0 11-6 B 42 
; Semicolon (Special Character) 11-6-8 CB 842 P P 11-7 CB 421 
A Delta (Mode Change) 11-7-8 B 8421 Q Q 11-8 CB 8 

- - 11 B R R 11-9 B 8 1 

/ / 0-1 C A 1 :f: + Record Mark 0-2-8 A82 
, , 0-3-8 C A821 S S 0-2 C A 2 

% % 0-4-8 A84 T T 0-3 A 21 
= Word Separator 0-5-8 C A841 U U 0-4 C A4 
, 

Apostrophe (Special Character) 0-6-8 C A842 V V 0-5 C A41 

" Tape Segment Mark 0-7-8 A8421 W W 0-6 A 42 
= ¢ Cent (Special Character Note 2) A X X 0-7 C A 421 

# # 3-8 821 Y Y 0-8 C A8 
@ @ 4-8 C 84 Z Z 0-9 A8 1 

: Colon (Special Character) 5-8 841 0 0 0 C 8 2 
> Greater Than (Special Character) 6-8 842 1 1 1 1 
v' Tape Mark 7-8 C 8421 2 2 2 2 

& ? (Plus Zero) 12-0 CBA82 3 3 3 C 21 
A A 12-1 BA 1 4 4 4 4 
B B 12-2 BA 2 5 5 5 C 4 1 
C C 12-3 CBA 21 6 6 6 C 42 
D D 12-4 BA 4 7 7 7 421 
E E 12-5 CBA 4 1 8 8 8 8 
F F 12-6 CBA 42 9 9 9 C 8 1 

The IBM 1401 has the ability to read MLP card codes in the read feed only. The 1401 ignores the 8-9 punches when they appear in the 
same column. The 1401 does not punch out MLP card codes. 

Note 1. If specified. this code can be made compatible with 705 Group Mark Code (12-5-8). 
Note 2. The A-bit coding must be program generated in the IBM 1401 (it canot be read from a card; it can be punched as a zero). It is 

used in conjunction with the C-bit to indicate a blank position on tape that was written in even-bit parity. 

170 

I' 



"~I 

APPENDIX 4. INSTRUCTION TIMING DATA 

System Timings 

Key to abbreviations used in formulas 
LA = Length of the A-field 
Ln = Length of the B-field 
Lc = Length of Multiplicand field 
Lr = Length of Instruction 
LM = Length of Multiplier field 
LQ = Length of Quotient field 
LR = Length of Divisor field 
Ls = Number of significant digits in Divisor (Excludes high-order O's and 

blanks) 
Lw = Length of A- or B-field, whichever is shorter 
Lx = Number of characters to be cleared 
Ly = Number of characters back to right-most "0" in control field 
Lz = Number of O's inserted in a field 
I/O = Timing for Input or Output cycle 
F m = Forms movement times. Allow 20 IDS for first space, plus 5 ms for 

each additional space 
T m = Tape movement times 
2: = Number of fields included in an operation 

Operation 
OP 

Formula 
Code 

System Timings 

Operation 

Punch a Card 
Read a Card 
Read and Punch 
Select Stacker 
Set Word Mark 
Start Punch Feed * 
Start Read Feed * 
Store A-address Register * 
Store B-address Register * 
Subtract (no recomplement) 
Subtract (recornplernent) 
Write a Line 
Write and Punch 
Write and Read 
Write, Read and Punch 
Zero and Add 
Zero and Subtract 

OP 
Code 

4 
1 
5 
K 

9 
8 
Q 
H 
S 
S 
2 
6 
3 
7 
? 
! 

Formula 

.0115 (Lr + 1) + I/O 

.0115 (Lr + 1) + I/O 

.0115 (Lr + 1) + I/O 

.0115 (Lr + I) 

.0115 (Lr + 3) 

.0115 (Lr + I) 

.0115 (Lr + I) 

.0115 (Lr + 4) 

.ot15 (Lr + 4) 

.0115 (Lr + 3 + LA + Ln) 

.0115 (Lr + 3 + LA + 4Ln) 

.0115 (Lr + 1) + I/O 

.0115 (Lr + 1) + I/O 

.0115 (Lr + 1) + I/O 

.0115 (Lr + 1) + I/O 

.0115 (Lr + 1 + LA + Ln) 

.0115 (Lr + 1 + LA + Ln) 

Tape Operations 

-------------------------------1------------------------------------------------------
Add (no recornplernent) A 
Add (recornplernent) A 
Branch B 
Branch if Bit Equal * W 
Branch if Character Equal B 
Branch if Indicator On B 
Branch if Word Mark 
and/or Zone V 
Clear Storage / 
Clear Word Mark 0 
Compare C 
Control Carriage F 
Control Unit U 
Divide (aver.) * % 
Halt 0 

Load Characters to A 
Word Mark L 
Modify Address * # 
Move Characters to A or 
B Word Mark M 
Move Characters and Edit E 
Move Characters to Record 
or Word Mark * P 
Move Characters and 
Suppress Zeros Z 
Move and Insert Zeros * X 
Move Numeric D 
Move Zone Y 
Multiply (aver.) * @ 

No Operation N 

.0115 (Lr + 3 + LA + Ln) 

.0115 (Lr + 3 + LA + 4Ln) 

.0115 (Lr + 1) 

.0115 (Lr + 2) 

.0115 (Lt + 2) 
.0115 (Lr + I) 

.0115 (Lr + 2) 

.0115 (Lr + 1 + Lx) 

.0115 (Lr + 3) 

.0115 (Lr + 1 + LA + LR) 

.0115 (Lr + 1) + F 

.0115 (Lr + 1) + T 

.0115 (Lr + 2 + 7LRLQ + 8LQ) 

.0115 (Lr + 1) 

.0115 (Lr + 1 + 2LA) 

.0115 (Lr + 9) 

.0115 (Lr + 1 + 2Lw) 

.0115 (Lr + 1 + LA + Ln + Ly) 

.0115 (Lr + 1 + 2LA) 

.0115 (Lr + 1 + 3LA) 

.0115 (Lr + 1 + 22:LA + 2:Lz) 

.0115 (Lr + 3) 

.0115 (Lr + 3) 

.0115 (Lr + 3 + 2Lc + 5LcLM + 7LM) 

.0115 (Lr + 1) 

Tm - Tape movement can be determined from the following: 
N = Number of Characters 
C = Character Rate 
729 II at 200 cpi = .067 rns 

at 556 cp = .024 rns 
729 IV at 200 cpi = .044 rns 

at 556 cpi = .016 rns 
7330 at 200 cpi = .139 rns 

at 556 cpi = .050 rns 

729 Model II, Read 10.7 + CN rns = TAU intezlocked 
10.5 + CN rns = Processing interlocked 

Write 11.7 + CN IDS = TAU interlocked 
7.5 + CN rns = Processing interlocked 

729 Model IV, Read 6.8 + CN rns = TAU interlocked 
6.7 + CN rns = Processing.interlocked 

Write 7.8 + CN rns = TAU interlocked 
5 + CN rns = Processing interlocked 

7330 Read 20.5 + CN rns = TAU interlocked 
7.7 + CN rns = Processing interlocked 

Write 20.3 + CN rns = TAU interlocked 
5 + CN rns = Processing interlocked 

Rewind 
729 Model II = 1.2 minutes/reel 
729 Model IV = .9 minutes/reel 
7330 (High Speed) = 2.2 minutes/reel 

Skip and Blank Tape 
(add to subsequent write time) 

729 Model II = 40.5 rns 
729 Model IV = 27 rns 
7330 = 103 rns 

Backspace (after Read) Backspace (after Write) 
729 Model II = 46 + CN rns 
729 Model IV = 33 + CN rns 
7330 = 428 + CN ms 

729 Model II = 52 + CN ms 
729 Model IV = 37 + CN rns 
7330 = 435 + CN rns 

171 



APPENDIX 5. IBM 1401: CONFIGURA liON 
ASSUMED IN TEXT 

The operations described in the text would re­
quire a machine with the equipment listed below. 

IBM 1401 Processing Unit with 4000 characters 
of storage. 

Sense Switches 
MUltiply-Divide feature 
Print storage 

172 

High-Low-Equal Compare 
Indexing Feature 
IBM 1402 Card Read Punch 
IBM 1403 Printer with 132 printing positions 
IBM 1405-1 Disk Storage Unit 
IBM 1407 Console Inquiry Station 
4 IBM 729-IV Magnetic Tape Units 



f) 

GLOSSARY 

Terminology in the computing field is not yet fully 
standardized. Every attempt has been made in this book 
to use terms in their most common meaning, but it should 
be realized that variations do exist. Furthermore, this 
listing is not intended to be complete or rigorous; it is 
intended simply to provide a basic vocabulary. 

Absolute Coding. Coding in which instructions are 
written in the basic machine language, that is, with 
absolute addresses and actual operation codes. 

Accumulator. A storage register where results are ac­
cumulated. 

Addition Record. A record that results in the creation 
of a new record in a master file being updated. 

Address. A label, name, or number that designates a 
register, a location, or a device where information is 
stored; the part of an instruction that specifies the 
location of an operand. 

Address Computation. Computer operations that result 
in the creation or modification of the address parts of 
instructions. 

Alphameric. Characters that may be either letters of 
the alphabet, numerical digits, or certain special sym­
bols. 

Analog Computer. A computer that represents variables 
by physical analogies in continuous form, such as 
amount of rotation of a shaft and amount of voltage. 
Contrasted to digital computer: the difference is some­
times expressed by saying that an analog computer 
measures, whereas a digital computer counts. 

Arithmetic Unit. That component of a computer in which 
arithmetic and logical operations are performed. 

Assemble. To translate a routine coded in a symbolic 
machine language into absolute machine instructions 
and to assign machine storage for those instructions 
and for data; usually done by the computer under 
control of an assembly routine. Distinguished from 
compile by the fact that assembly produces one ma­
chine instruction from one symbolic instruction, 
whereas compiling produces (in general) many machine 
instructions from one pseudo instruction. 

Batch Processing. The system of processing in which 
a number of similar input items are grouped for 
processing during the same machine run. 

Binary Digit. One of the symbols 0 or 1. A digit in the 
binary scale of notation, usually called a bit. 

Blank. The character that results in storage from read­
ing an input record such as a card column which con­
tains no punches; the character code in storage that 
will result in not printing in a given position. 

Block. A group of records, words, or characters handled 
as one unit. Used in this book primarily to denote a 
group of records on magnetic tape. 

Block Diagram. A graphic representation of the logical 
sequence of procedural steps for processing data. 
More detailed than a flow chart; a flow chart shows 
the over-all steps to be performed, whereas a block 
diagram shows the details of how to perform each 
step. 

Blocking. Combining two or more records into one 
block; usually refers to tape operations. 

Branch. A point in a routine where one of two or more 
choices is selected under control of the routine, that 
is, a conditional transfer. 

Buffer Storage. Any device that temporarily stores in­
formation during a transfer of information. From a 
programming standpoint, refers to a device for match­
ing the speeds of internal computation and an input 
or output device, thereby permitting simultaneous 
computation and input or output. 

Card Field. A fixed number of consecutive card columns 
assigned to a unit of information. 

Cell. See Location. 
Chaining. (1) 1401 instruction addresses: a technique 

of omitting one or both addresses of an instruction with 
the omitted address being supplied by the previous 
contents of the corresponding address register. (2) 
Disk storage: a system of storing records in a disk file 
in which each record belongs to a chain (group of 
records) and has a linking field for tracing the chain. 

Character. One of a set of elementary symbols which 
may be arranged in ordered groups to express informa-

173 



174 IBM 1401 PROGRAMMING 

tion; these symbols may include the decimal digits 
o through 9, the letters A through Z, punctuation 
symbols, special input and output symbols, and any 
other symbols that a computer may accept. 

Checkout. The process of determining the correctness 
of a computer routine, locating any errors in it, and 
correcting them. Also the detection and correction 
of malfunction in the computer itself. 

Closed Subroutine. A subroutine not stored in the main 
path of the routine. Such a subroutine is entered by 
a branch operation and provision is made to return 
control to the main routine at the end of the sub­
routine. 

Code. To write instructions for a computer either in 
absolute or in some other language. 

Collate. To merge items from two or more similarly 
sequenced files into one sequenced file without neces­
sarily including all items from the original files. 

Collating Sequence. The sequence into which the al­
lowable characters of a particular computer are ranked. 

Compare. To examine the representation of two groups 
of characters to discover identity or relative magnitude. 

Compile. To produce a machine language routine by 
translation from a program written in some non­
machine language. See also Assemble. 

Compiler. A special machine language routine used to 
perform compiling operations. 

Complement. Usually a complement represents the nega­
tive of a quantity. For example, the three-digit tens 
complement of 026 is 974. 

Computer. Any device capable of accepting information, 
processing it and providing the results of these proc­
esses in acceptable form. In this text the term is 
always meant to imply a stored program digital com­
puter. 

Console. A part of the computer where most of the 
external controls for a computer operation are exer­
cised and where most of the indicators of internal 
operation are located. 

Control Card. A card which contains input data or 
parameters for a specific application of a general 
routine. 

Control Field. The field of information by which a 
record in a file is identified and/or controlled. 

Control Panel. The panel that uses removable wires to 
direct the operation of some computers and punched 
card equipment. Not used in the 1401. 

Control Total. A sum formed by adding together some 
field from each record in an arbitrary grouping of 
records; may have some significance as a number; 
used for checking machine, program, and data reli­
ability. 

Control Unit. The portion of the hardware of the com­
puter that directs the sequence of automatic opera­
tions, interprets the coded instructions, and initiates 
the proper signals to the computer circuits to execute 
the instructions. 

Core Storage. A form of high speed storage in which 
information is represented by the magnetization of 
ferromagnetic cores. 

Data Processing. A generic term for all operations car­
ried out on data according to precise rules of pro­
cedure; a generic term for computing in general as 
applied to business situations. 

Debugging. See Checkout. 

Deletion Record. A record that results in the deletion 
of some corresponding record from a master file. 

Detail File. A file to be processed against a master file. 
Digital Computer. A computer in which information is 

represented in discrete form, such as by one of two 
directions of magnetization of a magnetic core or by 
the presence or absence of an electric pulse at a cer­
tain point in time. Contrasted with analog computer. 

Document. Any representation of information that is 
readable by human beings; usually on paper. 

Edit. To rearrange information for machine output or 
input. To prepare for publication, that is, delete, 
rearrange, select, or insert data as needed. 

Execute. To carry out an instruction or perform a 
routine. 

Field. A set of one or more characters which is treated 
as a whole; a unit of information. 

File. A collection of records; an organized collection of 
information directed toward some purpose. 

File Maintenance. The processing of a master file re­
quired to handle changes in it. Examples: changes 
in number of dependents in a payroll file, the addition 
of new checking accounts in a banking application. 

Fixed Word Length. Refers to a computer in which a 
computer word always contains the same number of 
characters. Contrasted with variable word length. 

Flow Chart. A graphic representation of the sequence 
of processing operations required to carry out data 
processing. More general than a block diagram; a 
flow chart shows the sequence of processing steps, 
whereas a block diagram shows in detail how to carry 
out each step. 

Form. A printed or typed document that usually has 
blank spaces for the insertion of information. 

Format. The predetermined arrangement of characters, 
fields, lines, page number, punctuation marks, etc. 
Refers to input, output, and file information. 

Generate. To produce a complete routine from one 
which is in skeleton form under control of parameters 
supplied to the generator routine. 

Hardware. The mechanical, magnetic, electric, and elec­
tronic devices from which a computer is constructed. 

Hash Total. A control total that has no meaning in 
itself as a number. 

Header Label. A magnetic tape block at the beginning 
of a tape, which identifies and describes the informa­
tion on the tape. 

Home Record. The first record in a chain of records, 
using the chaining method of disk file organization. 



'j 

Housekeeping. Operations in a routine which do not 
directly contribute to the solution of the problem at 
hand but which are made necessary by the method of 
operation of the computer. Examples: Loop testing, 
setting of word marks. 

Index Register. A register that contains a quantity that 
may be used to modify addresses automatically (and 
for other purposes) under direction of the control 
section of the computer. 

Initialize. To execute the instructions immediately prior 
to a loop, which set addresses, counters, data, etc., to 
their desired initial values. 

Input. Information transferred from auxiliary or ex­
ternal storage into the internal storage of a computer. 

Instruction. A set of characters which as a unit causes 
the computer to perform one of its operations. An 
instruction may contain one or more addresses accord­
ing to the number of references to operands in storage 
contained in the instruction. 

Internal Storage. Computer storage for data and In­

structions, from which instructions can be moved di­
rectly to the control unit for execution. 

Interpret. (1) To print on a punched card the informa­
tion punched in that card. (2) To translate non­
machine language to machine language. 

Interpretive Routine. A routine that decodes instructions 
written in nonmachine language and immediately exe­
cutes those instructions, as contrasted with a compiler, 
which decodes the nonmachine language and produces 
a machine language routine to be executed at a later 
time. 

Key. See Control Field. 

Label. (1) In SPS programming the symbolic location 
of a word. (2) In magnetic tape operations a record 
magnetically recorded on a tape to identify its contents 
to a computer routine. 

Library. An organized collection of standard and proven 
routines and subroutines which may be incorporated in 
larger routines. 

Linkage. A technique for providing interconnections be­
tween a main routine and a subroutine. 

Location. A place in storage where a unit of data or 
of an instruction may be stored. 

Loop. A coding technique whereby a group of instruc­
tions is repeated with modification of some of the 
instructions within the group and/or with modifica­
tion of the data being operated on. Usually consists 
of initialization, computing, modification, and testing, 
although not necessarily in that order. 

Machine Language. A language for writing instructions 
in a form to be executed directly by the computer. 
Contrasted to symbolic coding languages and to pro­
cedure-oriented languages. 

Macro-Instruction. A machinelike source language state­
ment which can produce a number of machine instruc­
tions when compiled. 

GLOSSARY 175 

Magnetic Disk. A storage device in which information 
is recorded on the magnetizable surface of a rotating 
disk. A magnetic disk storage system is an array of 
such devices with associated reading and writing heads 
tha t are mounted on movable arms. 

Magnetic Drum. A storage device in which information 
is recorded on the magnetizable surface of a rotating 
cylinder. 

Magnetic Tape. A storage system in which information 
is recorded on the magnetizable surface of a strip of 
plastic tape. 

Master File. A file of semipermanent referance informa­
tion which is usually updated periodically. 

Memory. See Internal Storage. 

Merge. To combine items from two or more similarly 
sequenced files into one sequenced file, including all 
items from the original files. 

Microsecond. One millionth of a second. 
Millisecond. One thousandth of a second. 
Mnemonic Operation Code. An operation code written 

in a symbolic notation that is easier to remember than 
the actual operation code of the machine. Must be 
converted to an actual operation code before execution, 
which is done as part of an assembly, interpretive, or 
compiling routine. . 

Object Routine. The machine language routine which is 
the output after translation from the source language. 
The running routine. 

Off-line. Pertaining to the operation of input or output 
devices or auxiliary equipment not under direct control 
of the central processing unit. 

On-line. Pertaining to the operation of input or output 
devices under direct control of the computer. 

Open Subroutine. A subroutine that is inserted directly 
into a larger routine where needed. 

Origin. The absolute storage address of the beginning 
of a program. 

Output. Information transferred from the internal stor­
age of the computer to output devices or external 
storage. 

Overflow. (1) The generation of a quantity beyond the 
capacity of a register. (2) A record linked to a home 
record in the chaining method of disk file organization. 

Parameter. A quantity to which arbitrary values may 
be assigned; used in subroutines and generators speci­
fying such things as record size, decimal point location, 
and record format. 

Parity Check. A checking technique based on making 
the total numbers of ones in some grouping of binary 
digits odd (or even). Whenever such a group is read, 
it is presumed to be correct if the number of ones is 
still odd (or even). 

Procedure-Oriented Language. A source language 
oriented to the description of procedural steps in ma­
chine computing. 



176 IBM 1401 PROGRAMMING 

Processor. A program of instructions that carries out 
the translation from a source language program to an 
object program. Includes compilers, assemblers, re­
port program generators, etc. 

Program (verb). To plan the method of attack on a 
specified and defined problem for computer solution. 
Distinguished from coding by the fact that coding 
is writing instructions, whereas programming is char­
acterized by the drawing of flow charts. 

Program (noun). A group of related routines which 
solve a given problem. 

Pseudo-Instruction. A symbolic representation of infor­
mation to an assembler or a compiler; not an instruc­
tion to the computer, although for convenience it is 
often written in the same general format as a computer 
instruction. 

Random Access Storage. Storage in which the time re­
quired to obtain information is relatively independent 
of the location of the information most recently ob­
tained. 

Read. To transfer information from an input device to 
)nternal storage. 

Real Time Computation. A data processing arrangement 
in which the computer is required to be able to supply 
information to a physical or business activity when­
ever the information is demanded. 

Record. A collection of fields; the information related 
to one area of activity in a data processing activity; 
files are made up of records. 

Register. A device that can hold information while or 
until it is used. May consist of core storage. 

Report Generation. A technique for producing complete 
machine reports from information that describes the 
input file and the format and contents of the output 
report. 

Rewind. To return a tape so its beginning. 
Routine. A set of computer instructions that carries out 

some well-defined function. 
Run. One routine or several routines automatically 

linked so that they form an operating unit during 
which manual interruptions are not normally required 
of the computer operator. 

Software. All the programming systems required for an 
effective data processing operation, in addition to the 
hardware of the computer system itself. Includes as­
semblers, compilers, and utility routines. 

Source Language. The language used to specify com­
puter processing; translated into object language by 
an assembler or compiler. 

Stora'ge. Any device into which information can be 
transferred, that will hold information, and from which 
the information can be obtained at a later time. 

Stored Program Computer. A computer that can alter 
its own instructions in storage as though they were 
data and later execute the altered instructions. 

Subroutine. A routine that may be incorporated into a 
larger routine. 

Switch. A symbol used to indicate a branch point or a 
set of instructions to condition a branch for later 
execution. 

Symbolic Coding. Coding in which instructions are 
written in nonmachine language. That is, coding using 
symbolic notation for operators and operands instead 
of actual machine instruction codes and addresses. 

Systems Analysis. The analysis of a business activity 
to determine precisely what must be accomplished and 
how to accomplish it. 

Trailer Label Block. A block that follows one or more 
other blocks and contains data pertinent to the pre­
ceding blocks. 

Transaction File. A file containing current information 
related to a data processing activity; it is usually used 
to update a master file. 

Update. To modify a master file according to current 
information, often that contained in a transaction file, 
according to a procedure specified as part of a data 
processing activity. 

Utility Routine. A standard routine used to assist in the 
operation of a computer. For instance, a conversion 
routine, a print out routine, a tape reading routine, etc. 

Variable Word Length. Refers to a machine in which 
the number of characters comprising a computer word 
is not fixed. 

Word. A set of characters which is treated as one unit 
and has one addressable location. 

Working Storage. A portion of internal storage used 
for input data, immediate results, or output. 

Write. To transfer information from internal storage 
to an output device or to auxiliary storage. 

Zero Elimination. The process of eliminating nonsignifi­
cant zeroes to the left of significant digits, usually 
before printing. 



BIBLIOGRAPHY 

There are many good books available on com­
puting, some of which are listed here. A more 
complete listing may be found in the IBM Data 
Processing Bibliography, Form J20-8014-2. 

Gotlieb, C. C., and J. N. P. Hume. High Speed Data 
Processing. McGraw-Hill Book Company, New York, 
1958, 11 + 338 pp. Begins with an introduction to 
data processing and programming ideas, followed by 
a number of chapters on typical commercial appli­
cations. 

Grabbe, Eugene M., Simon Ramo, and Dean E. Wooldridge, 
editors. Handbook of Automation, Computation, and 
Control. Vol. 2: Computers and Data Processing. 
John Wiley and Sons, New York, 1959, 1100 pp. Con­
tains a long chapter on the theory of programming, 
several chapters on typical applications, and long sec­
tions on computer design and analog computers. 

Grabbe, Eugene M., editor. Automation in Business and 
Industry. John Wiley and Sons, New York, 1957, 611 
pp. Contains information on a wide variety of com­
puter applications as of 1956. 

Gregory, Robert H., and Richard L. VanHorn. Automatic 
Data-Processing Systems: Principles and Procedures. 
Wadsworth Publishing Company, San Francisco, 1960, 
705 pp. Introduces concepts in data processing, com­
puting equipment, programming, and systems design. 
The coverage is thorough and thoughtful. 

Hein, Leonard W. Introduction to Electronic Data Proc­
essing for Business. D. Van Nostrand Company, 
Princeton, 1961. 14 + 320 pp. A general introduction 
to computer programming, based on the IBM 650. 
All of the examples are based on commercial applica­
tions. Includes chapters on file maintenance, merging 
and collating, sorting, and re'port writing. 

Kaufman, Felix. Electronic Data Processing and Auditing. 
Ronald Press, New York, 1961, 180 pp. The title of 
this book is somewhat misleading. Although the em­
phasis is on auditing problems, there is a great deal 
of valuable general information on applications and 
systems design. Contains many flow charts and block 
diagrams, many examples of the flow of information 
through a business organization, and discussions of 
breaking an application into runs, as well as the treat­
ment of questions of error-checking and proving accu­
racy. 

Leeds, Herbert D., and Gerald M. Weinberg. Computer 
Programming Fundamentals. McGraw-Hill Book Com­
pany, New York, 1961, 368 pp. Designed both for in­
dividual and classroom training in computer program­
ming. The IBM 7090 is used as the illustrative com­
puter, but the understanding of its functions and pur­
pose may easily be adapted to any computer course. 
Heavy emphasis is laid on the basic concepts, ideas, 
and techniques required for the purpose of communi­
cation with computers. 

Martin, E. W., Jr. Electronic Data Processing: An Intro­
duction. Richard D. Irwin, Homewood, Illinois, 1961, 
423 pp. Ranges from punched-card methods to man­
agement problems in introducing and using a 'Jom­
puter. The programming section is based on the IBM 

650. Contains much valuable information on appli­
cations and systems design. 

McCormick, E. M. Digital Computer Primer. McGraw­
Hill Book Company, New York, 1959, 214 pp. Dis­
cusses the components, operation, and organization of 
a digital computer. Does not discuss programming or 
applications, except incidentally. The treatment is ele­
mentary, requires little mathematics. 

McCracken, D. D. A Guide to FORTRAN Programming. 
John Wiley and Sons, New York, 1961, 88 pp. An in­
troduction to the FORTRAN system, requiring little 
mathematics. 

McCracken, D. D., H. Weiss, and T. H. Lee: Programming 
Business Computers. John Wiley and Sons, New York, 
1959, 510 pp. Discusses computer coding and pro­
gramming in terms of a hypothetical computer quite dif­
ferent from the IBM 1401. Includes chapters on tape 
programming methods, program checkout procedures, 
and sorting methods. 

Murphy, J. S. Basics of Digital Computers. John F. Rider 
Publishers, New York, 1958, Vol. I: 116 pp.; Vol. II: 
133 pp.; Vol. III: 136 pp. An extremely readable and 
profusely illustrated introduction to computer design. 
Introduces basic programming concepts, but in no 
depth. For a quick picture of how a computer works, 
this is a good book. 

Phister, Montgomery, Jr. Logical Design of Digital Com­
puters. John Wiley and Sons, New York, 1958, 408 pp. 
A standard engineering text on the design and opera­
tion of computers. 

Richards, R. K. Arithmetic Operations in Digital Com­
puters. D. Van Nostrand Co., Princeton, 1955, 397 pp. 

177 



178 IBM 1401 PROGRAMMING 

Clear explanation of the design and workings of a 
computer. Considerably more technical than Murphy 
but less so than Phister. 

Wrubel, Marshall H. A Primer of Programming for Digital 
Computers. McGraw-Hill Book Company, New York, 
1959, 230 pp. A general introduction to computer pro­
gramming based on the IBM 650 and several pro­
gramming systems for it. Many of the examples in­
volve scientific applications, although the mathematical 
preparation required is not extensive. Discussions of 
symbolic and automatic coding techniques are included. 

IBM Publications 

These and other IBM publications are available 
from local IBM branch offices. 

1401 Data Processing System. General Information Man­
ual, form D24-1401-2. A brief introduction to the 1401, 
with a sketch of some basic computer concepts. Not 
a complete description of the machine and not intended 
to teach programming. 

1401 Data Processing System. Reference Manual, form 
A-24-1403-4. A complete description of the program­
ming and operating characteristics of the 1401. Con­
tains few examples; not intended as a teaching text. 

IBM 1401 Data Processing System. From Control Panel 
to Stored Program. General Information Manual, form 
F20-0208. A brief introduction to the 1401 and to pro­
gramming concepts, followed by a description of how 
punched card operations can be implemented on the 
1401. Good introduction to programming for the per­
son with punched card experience. 

Introduction to IBM Data Processing Systems. General 
Information Manual, form F22-6517. A manual pre­
,pared to provide a basic understanding of computer 
systems and programmed functions. Used as an in­
troductory text in IBM education programs. 

Flow Charting and Block Diagramming Techniques. Ref­
erence Manual, form C20-8008-0. Discusses the need 
for flow charting and block diagramming, introduces the 
accepted IBM notation, and gives a number of examples. 

IBM Charting and Diagramming Template. Form X24-
5884-5. Simplifies the drawing of flow charts and block 
diagrams, as well as providing a convenient source of 
various reference information on printing and card 
punching. 

IBM 1401 Symbolic Programming System: Preliminary 
Specifications. Bulletin, form J29-0200-2. 

IBM Magnetic Tape Record Characteristics. Form X22-
6785. 

Report Program Generator for IBM 1401 Card and Tape 
Systems. Bulletin, form J24-0215. 

Autocoder for the IBM 1401: Preliminary Specifications. 
Bulletin, form J24-1434-1. 

Utility Programs for IBM 1401 Tape Systems: Preliminary 
Specifications. Bulletin, form J29-1411-0. 

Utility Programs for IBM RAMAC 1401 Systems: Pre­
liminary Specifications. Bulletin, form J29-1426-0. 

COBOL. General Information Manual, form F28-8053-1 
A brief introduction to data processing and the 
COBOL language, followed by a complete definition 
of the language and several examples. 

An Introduction to Information Retrieval. General In­
formation Manual, form E20-8044. 

FORTRAN. Gpneral Information Manual, form F28-8074. 
IBM Data Processing Bibliography. Form J20-80l4-2. 

(I 



ANSWERS TO SELECTED 
EXERCISES 

I t is seldom that there is only one correct answer to 
a problem in programming. The answers shown here 
are correct in the sense that they will carry out the 

processing required by the problem statement, but there 
are in most cases many other acceptable solutions. 

179 



180 IBM 1401 PROGRAMMING 

CHAPTER 

1. 

$--month 
total 

Store district :#= 
$-district total 

Store man :#= 
.----------~ $--month total 

I-count 

Add $ to 
district and 

month totals 

Add $ to 
month total 

Add $ to man, 
district, and 
month totals 

Add 1 to count 

',I 



3. 

Print all 
totals 

Add $ to 
district and 

month totals 

$-month 
total 

Store district 41= 

ANSWERS TO SElECTED EXERCISES 181 

$ -+ district 1.4------------. 
total 

Store man 41= 

$-man 
total 

Add $ to 
month total 

Add $ to man, 
district, and 
month totals 



182 IBM 1401 PROGRAMMING 

5. 

District-worked 

cards will reject 

Sales reports 

1401 

Original 
sales cards 

(Discard) 

Unmatched 
sales cards 

Sales summary 
by product 

To salesman and 
district summarization 



CHAPTER 2 

1. 

Multiply price 
by units sold 

No 

CHAPTER 3 

1. 1234567 

t 
800 

2376563 

t 
200 

4. 5028 

t 
497 

62320 

t 
508 

6. 
IBt.1 1401 PROGRAM CHART 

Program: 

0 
Programmer: 

Step Inst. 
Instruction 

No. Address 
0 
P A/I B d 

/ 080 

/ /80 

00/ 

/ 

M 080 /80 

4 

-
8. 

IBt.1140 1 PROGRAM CHART 

Program: 

0 
Programmer: 

Step Inst. 
Instruction 

No. Address 
0 
P A/I B d 

l! 080 

1/ 299 

1/ 332 

00/ 0/0 

015 0/9 

I. 023 230 

M 008 208 

M 0/2 222 

A 0/8 235 

A 022 235 

0 
A 026 235 

2 

-

ANSWERS TO SELECTED EXERCISES 183 

FORMX2.c·6.c37·Q 
PRINTED IN U.S.A. 

Date: 

Effective No. 
Remorks of Characters 

Inst. Data Total 

FORM X 2"·60437·0 
PRINTED IN U.S.A. 

Date: 

Effective No. 
Remarks of Characters 

Inst. Data Total 

- -



184 IBM 1401 PROGRAMMING 

CHAPTER 4 

1. START 0333 
REPEAT 0349 
R0UND 0400 
T0TAL 0411 
READI 0010 
PRINTI 0209 

3. 

PG LIN CT LABEL OP A OPERAND B OPERAND D LOC INSTRUCTION 
1 010 ORG 0500 
1 020 4 ABC CS 0080 0500 / 080 
1 030 4 CS 0299 0504 / 299 
1 040 4 CS 0332 0508 / 
1 050 7 SW Al -004 A2 -004 0512 001 006 
1 060 7 SW A2 -004 B1 -003 0519 , 911 207 
1 070 1 BCD R 0526 1 
1 080 7 A Al TOT 0527 A 005 571 
1 090 7 A A2 TOT 0534 A 010 571 
1 100 7 S A3 TOT 0541 S 015 571 
1 110 7 A HALFD TOT -001 0548 A 572 570 
1 120 7 MCS TOT -002 B1 0555 Z 569 210 
1 130 4 W BCD 0562 2 526 
1 140 Al DS 0005 0005 
1 150 A2 DS 0010 0010 
1 160 A3 DS 0015 0015 
1 170 B1 DS 0210 0210 
1 180 6 TOT DCW * 000000 0571 
1 190 1 HALFD DCW * 5 0572 
1 200 END ABC / 500 080 

CHAPTER 5 

1. 

DATAl 2: DATA2 

DATAI~BIG 

DATA2~BIG 



ANSWERS TO SELECTED EXERCISES 185 

1. (Continued) 

0 0 0 
IB"1 1401 Symbolic Programming System 

Program 
Coding Sheet 

Page No. W of ----

Programmed by Date Identification I I I I I I 
76 80 

(AI OPERAND (BIOPERAND 

LINE COUNT LABEL OPERATION I;J CHAR. ~ I~I 
CHAR. ~ d COMMENTS 

ADDRESS ADDRESS 
3 5 6 7 B 13 14 16 17 

ADJ. 
27 28 

ADJ. 
38 39 40 ~~ 

C I D4 T A I I DA TA2 0 I 0 I 

2 0 B 
, 

I¢,THER 
, 

U 0 
~ I 

0 MCIW DATAl I BIB 0.3 I 

0 4 0 8 I AR(J,UND: 
0 ~ 0 I¢.THER MC'W DATA 2 I BIG I 

0 6 0 A R~,U tV D I I 
I 

7 0 
I I 

0 I 

'--
I 

3. 
Page No.Wof ___ _ 

(AI OPERAND (BI OPERAND 

LINE COUNT LABEL OPERATION I;J CHAR. ~ I~I 
CHAR. ~ d COMMENTS 

ADDRESS ADDRESS 
5 6 7 8 13 14 16 17 

ADJ. 
27 28 

ADJ. 
39 39 40 ~5 3 

C Sl 0080 I , 
0 I 0 I I 

C 5' 0180 I I 
0 2 0 I I 

CS I 0299 I I 
0 3 0 I , 

CSI 0332 
, 

: 0 4 0 I 

SWI 004/ : I 
0 ~ 0 I 

R I I 
0 6 0 I 

BW'r PUNCH 0023 I K. 0 7 0 I L_...1 __ .1._ 

MC'W 0080 024.0 
, 

0 8 0 I ----'-

W I IA R(J,U N D, 
, 

0 9 0 I ..L-'-_L_ 

I 0 0 PUNCH MC:W 0080 
, 

0/4;0 I , I I I I I I ...L_~---1_ 

P ! , , , I 0 I I I I I I .L __ J~_ . ...L __ 

AR¢UND I I I , 2 0 , I ...l ____ L.--l __ .l_ 

I 3 0 
, , , , I -L.-'--



186 IBM 1401 PROGRAMMING 

No 

Housekeeping 

Select stacker 

Store model #, 
and quantity 

Zero-. 
cost accumulator 

Get total parts 
requirements 

Multiply to 
get total cost 

Add to cost 
accumulator 

Select stacker 

Halt 



ANSWERS TO SELECTED EXERCISES 187 

6. (Continued) Page No. L....c...J of __ _ 
I 2 

(A) OPERAND (B) OPERAND 

LINE COUNT LABEL OPERATION I;J CHAR. ~ I~I CHAR. ~ d COMMENTS 
ADDRESS ADDRESS 

3 5 6 7 8 13 14 16 17 
ADJ. 

27 28 
AOJ. 

38 39 40 ~~ 

0 I 0 EXP5UM CS' 0080 
, 

H,¢,US E K.E EP.I N G , 
0 2 0 C 5' 0/80 

I 
I 

o , 3 0 C 5' 0299 
, , 

0 4.0 cs: 0332 I , 
0 ~ 0 5W' 000/ 0006 : 
0 6 0 5W' 00./ / 003 I I 

I 

0 7 0 SW' 003,4-, 0/31 , , 
o 8 0 R I , 

READ S C,H,ED CA RD I 

~~ 55' I / 5 £ L ECT 5T.ACKER ----L-. ---L~L--,--

PR,r/),ON,r/J: ~~ --'-- !£!2H..Lt;.LQ L C:A RI PR¢,OUCT NUMBER 
, , 0 MC'W R2 ?iT~ I r;,u ANT I T Y. SCH.£D. -L. __ L-.J---.l.~ 

, 

~~ ----"-- --'_L_-'-_L--"--. ML~W ZoE R r), CSTACC' Z £.R ¢i C'¢lST ACCUM. 
~ --'-_. t'-L4.t ~L~j2 R I __ L_L 

~~~ -~ . c l R/ P R,¢' 0 M (j): SAME PR (/;,0, Nr;, Q 

---'--"~ L-
a I PRINT / Nt/J,- NE w. 5 C,H, CA RO

~~ ~ L CiA 1<,3 PARTM,¢: Y,ES-P.ART CARD
~'-O._ r---L-'-_L~ L ,C:A R4, DESC SETUP PUNCH A RE,A
--'--'-~~ _.1._ _-----1- I I I I MC:W (), T y, , MUL TI -,004 GET Ttj,T,AL Q, T Y.

AL: RS I MULT.I I
.~L~~L~ _...L __ ~.L-L---'------1- I I

2 . 0 0 MC'W MUL T 1 , T,tj, T Q, T y: ,
, ,

2_!~.! .,_?_ P : , I PUNCH EXP. P.T REQ __ ...L ___ --.L--.J_---L.--L._L_ I , I I _, -'-----L- ,

I I I I
--.-: , - --_ ... _- -L--.1.._L--..l __ L I ,

"--'-- - ----L-i_ I
I I I I

Page No. W of ---

(A) OPERAND (B) OPERAND

LINE COUNT LABEL OPERATION

I;J CHAR. ~ I ±,I CHAR. ~ d COMMENTS
ADDRESS ADDRESS

3 5 6 7 8 '3 14 16 17
ADJ.

27 28 34 ADJ. 38 39 40 55

0 I 0 MCIW (}'T.Y. I MUL T 2 :-:006 SETUP C,(j 5,7, ,~U,4.L. ,
o 2 0 M I IR,6 : 'M,u L T.2 I ,

I I L---L---l--'--

o 3 0 A
,

MUL7 I C 5 T.A C C: ADD 7,$, e,r/J,S T ACe. I

a 4 0 8 : LAST I I A LAST C A R,O, ,(2 I I

o ~ a B I PA R, T.C 0: : N r),- RE A [) N.E X, T, ,CO
a 6 0 ARIN7 55'

I / SELECT STACK~ I

o 7 a L C~A P R, rJ,O NrJ: PRINT./: SET U P ~,R, I,N, L~~L_
o 8 0 L C'A 10,7 y. P R I #.7.2: riF
o 9 a L CiA EDIT. P R I N. T. 3: T r;, TA L -'--.'---

I o a M,C'E IC,S,T.A,C,C P.R,I N r,3: C (j,S T
I I 0 W. I SCHCD I PRINT AND 8 RA NC",/i ,
I 2 0 LA,S T L C'A P R,rJ,D,N~(/) P R I NT I:
I 3 a L C:A 16J,T, y, PRINT-Z
I 4 0 L CiA £ O,I T. P R".I:N.T. 3:
I ~ 0 M,clE C,S T,A,CC P,R I N.T3:
I 6 a W. I I I

I I

I 7 a /I A, L 7 /I, I II,,4LT. I I
I I

A.n I I I -

188 IBM 1401 PROGRAMMING

6. (Continued) Page No. ~ of __ _
I 2

(Al OPERAND (Bl OPERAND

LINE COUNT LABEL OPERATION I;J CHAR. ~ I~I
CHAR. ~ d COMMENTS

ADDRESS
ADJ.

ADDRESS
ADJ.

3 5 6 7 8 13 14 16 17 27 28 38 39 40 55

0 I 0 RI OS' 0005 I I
I I

0 2 0 R2 OS' 0009
, I
I ,

0 3 0 R.3 05 1 00/0 I I
I I

0 4 0 R4 D,S' 0030 I I
I I

0 5 0 RS OS' 0033 I I
I I

0 6 0 R6 OSI 0038 I I , I

0 7 0 PR,¢ D N ¢ OS' 010.5 I I
I 1--'-----'_

o 8 0 PARTN,f/J OSI 0/ /0 I
I

o 9 0 DE5C OSI 0/30 I
I

I o 0 OS T¢,TQTY DC'W 0135 I
I

I I o 08 MULTI £)CIW *
I
I I

I 2 0 / 0 MULT2 DCIW *
I I

I I I

I 3 0 07 C5 T A CC OC:W *
I I I
I I I 1 1 I I I I I

I 4 0 05 PR IN T I OC:W 0205 I I I
I 1 1

I 5 0 04- ipJ~I NT2 OCIW 02/3
, I I
I I I -1-L~~--1..-

I 6 0 08 P.R] N T.3 OCIW 0225 I I I
I I 1 I I I I .t-

I 7 0 07 i! ER~. DC'W * :000 0000 I 1
I I ..

I 8 0 04- 1lt',TY OC'W ~ I I I
I I 1 1.. .. 1-.• .L _-'-...... L....

08 EO] T DC'W ~ I 0, • I I

~LO I 1 I .L......L....l....L .. -'-L-l

ENID EX P S U M, I I I·
2 0 0 I I I , I I I I -- -

CHAPTER 6

1.

LINE COUNT LABEL OPERATION

3 5 6 7 B 13 14 16 17

(AlOPERAND

ADDRESS I I CHAR. ~
;31 ADJ. 27 28

(Bl OPERAND

ADDRESS I + I CHAR.
~I ADJ.

010 START R I :: ::

Page No. ~ of __ _
I 2

g d COMMENTS

38 39 40

o 2 0 Z AI Z E R $. :: A C CUM. : : I /II I T, I A, L] r. E.
030 McIWINTADD:: AOOI.N.S:+:003 T¢"TAL Il ADORES5
040 ADDINSA I 0000 :: ACCUM :-:007 VARIABLE AODRESS
o 5 0 A ' F I V E :: A £)0 1/115:+: 003 Vt1,o 0] F y, V A R. A£)£) R
o 6 0 C I A 0 £) INS: +: 0 0 3 T EST: C ¢,M, P A £) DR W 0 73
o 7 0 B I ADD I N 5' : : 1/ B R IF N, (J, T, DON E
080 M I CI : ACCUM. : MlILT BY //'/2

4.

LINE

3

0 I

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

I 0

I I

I 2

I 3

I 4

I 5

I 6

I 7

I 8

I 9

COUNT LABEL OPERATION

Add 20 to
index 1

(Al OPERAND

ADDRESS

Put zero in
index 1

Move from
card area

to tape area

CHAR. ~

(Bl OPERAND

ADDRESS
5 6 7 8 13 14 16 17 I~I ADJ.

27 28 1~1
START SWI 0001 I I I

0 I I I

i!ERIND MC'W z E R, ¢, I IN.DEX I: I
0 I I

READ R I I I I
0 I I I

MCIW 0020 I 0420 I : 0 I I

8 I WR I T E I: I I
0 I I

C I IN DE X I: TES~
I I

0 I I

8 I W,R IT E 2: I I
0 I I

A I TWENT Y: INDEX I: I
0 I I

B I READ I I I
0 I I I

0 WRI TE I /'/}h' ~ ~. n~ I
I

H I ~
I

:-:003 I
0 I

WRITE2 -wAit. ;- ~ h".!,.._A I
0 I

0 8 : Z,ERI ND: I I
I I

0 03 zER¢, OC1W ~ I :000 I
I I

03 INDEX I DC!W 0089 I I I
0 I I I

03 TEST DC'W *
I :380 I I

0 I I I

02 TWENTY DC'W *
I :20 I I

0 I I I

ENID START I I I I
0 I I I I

: I I I I
0 I I I I

I I I

ANSWERS TO SELECTED EXERCISES 189

Poge No.Wof ___ _

CHAR. ~
d COMMENTS

ADJ.
38 39 40 55

S.E T , CIA,RJ2~~~A.l_L~M
I N I ~ I &L,I '~~LL£lY!LI2£,X

I I NDE XED
...l...-l.....-.L._-1_L~_

,MJALV~ _L--"--L- I
A LA S ~~I2L_.,-QL __ L-L-J __

N,¢ L-,.~~L-dJM __ lajRllJ£e
S Y E~L_l_"---,-~-'--.-, .. 1 .l .. ' ... 1.._

N~7LQjlF, ~ ,L/jJ).L~X-L-
l-----'--..L.--"---"--'--.L_L_L_.'-.. _L-

.--1._.1. _-'-._L _ '-_! __ '-_--'--__ L-

F I NJA...4...~lij!..L._"_-, ... L_'_~ __

L--'-- I I I ~_ .. '-_.L._L-

I I I I I I I -'---"---'--'--

---1..-__ ..L....-.i._----L-....l ~---1_

-1-...L-...l..-----L-..----1...-.L_...L_L----L __ ~

-L-L-L-

.L_----L-...l.-.. ~ __ L_~

~~-1...-...l..-.....L_----L-L_~

I-I--
__ L-1..-L. I I I I I I I I

190 IBM 1401 PROGRAMMING

CHAPTER 7

1. Page No. L.......J of ___ _
1 2

(A) OPERAND (8) OPERAND

LINE COUNT LABEL OPERATION I;J CHAR. ~ I~I
CHAR. g d COMMENTS

ADDRESS ADDRESS
3 5 6 7 8 13 14 16 17

ADJ.
27 28

ADJ.
38 39 40 ~~

0 1 0 Me'S ACCT 1 1 0007 1 1
1 1 1 1

0 2 0 MLCIW STATE I 1 0014- 1 1
1 1 1 1

0 3 0 swl DATE :-:0 02 DATE :-:004
0 4 0 MC'S DATE :-:003 0019 1 : 1

0 ~ 0 MC'S DATE :-:001 0022 : 1
1

0 6 0 MC'W DATE 1 1 0024 I 1
1 1 1 1

0 7 0 cw' DATE '-:0 02 OA TE :-:004-
0 8 0 L C:A Eor T 1 0036 1 1

1 I 1

0.9 0 MC'E DVE 1 0036 I I
I 1 1

~? s: 1 1 1
1 1 ,

";;;:1 I , ,
r-'---'--'----'--o_ ~ --'-------L-l- I , ,
r--!.-l_~:>- ~- 1 : 1

_ . __ .1... .1. __ ..l...-._--...L_-1.- 1 ,

~~~- 99 E,O,£,T, , OC:w ~ 1 

• 
1 , 

1 . , 1 , 1 , , 
~_.o ------'- --'--~ 

, , , 



3. 
Housekeeping 

0- total 

Move account 
number 

to previous 
account number 

Add $ to 
total 

ANSWERS TO SELECTED EXERCISES 191 



192 IBM 1401 PROGRAMMING 

3. (Continued) Page No. ~ of __ _ 
I 2 

(A1OPERAND (Bl OPERAND 

LINE COUNT LABEL OPERATION CHAR. g " CHAR. g d COMMENTS 
ADDRESS ADDRESS I;J I~I 3 5 6 7 8 13 14 16 17 

ADJ. 
27 29 

ADJ. 
39 39 40 ~~ 

~--'---L----"---L--'-_ &~ SWrPN I I 5 W I--,-T C N: SET SWITCH J).N ~_L~ --'-- I I 

B ' D I I I 

-~~ !----t- I I L-1 I 

~ lit.8,¢,S DC'W ¥ I :000 000 I 
~c2....~ I I 

!2..LQ ~//J, TA;.L DC'W ~ I I I 

.?--~....£... I I I 

I 0 E, 0, II T, , DC'jy ¥ I I 0 : f-.?~ I I 

I I I jJ.~ f_J_Hi],N,¢ DC'W ~ I-~~ ~! I I . _-'----'--1- _L_L_l __ L---1 I 

~.!~ NL.-'- oelw 1 :N ~ I 
~_.1.!_-L~ ---'--- '1 I 

rJJ'D START I , , 
~-~~ I-----c--f---'--' 

, I , I 
I -

Page No. W of ---

(Al OPERAND (Bl OPERAND 

LINE COUNT LABEL OPERATION CHAR. g CHAR. ~ d COMMENTS 
ADDRESS ADDRESS I;J I~I 3 5 6 7 8 13 14 16 17 

ADJ. 
27 28 

ADJ. 
39 39 40 ~~ 

STA R T swl 0001 I I o. , 0 , I 

0 2 0 R, 
, I I 

..l..-.L---'-- I I 

o . 3 0 A M,C'W z'ER,(jS, I I 
_l. ___ L--L- I I I I 

0 4 0 MCIW 0005 I I 
I I 

B Me'S 0005 I I 
0 ~ 0 

.L.... I I 

0 6 0 L CiA EOI T I I 
I I 

o 7 0 Mcli 0023 I I 
I I 

o 9 0 W I I 
I 

,A I 0028 o 9 0 ..L 

~-1~ 8 I C _.1. _ _ . .e 

I I 0 R I 
.L _.L....L----"---

~....l .. ~ e I 0005 _...L.._ -------1...--..-L-L-.l._ 

-'-'--~-~ -'-- L.....L..... 8 : B 
__ I~~ ----'-- D, , I I , eel 

I 5 a _-L-_L-..l..------L-1- J...J_C'A ED 1,T. 
, 6 a M,e'E T (j, T,A L I 

-'----1. I 

c;.~' I 
I-I~ __ ~ _-L- ---'--_L-1---L.......l..- I 

I 8 0 Wi I , 
~IT C,N IB : A I 

~ --'-- I 

I y, I I*- ,-:0,OL3 2 0 0 

- ---
8. The housekeeping is so small a fraction of the total 

job time as to be completely negligible. The most 
important consideration in estimating this job is 
whether the processing between cards can be done 
within the 10 ms of processing time; if not, the card 
reader will slow down to 400 cards/min. In this case, 
however, the processing requires less than 1 ms, so 
there is no problem. The reading of a five-card group 
will take 5 X 75 = 375 ms. The printing of a sum­
mary line for a group requires 100 ms, but to this 
must be added the waiting time until another starting 

00.23 I H, rJ, USE /(, E E,PJ IV, G, , 
I 
I 

T ¢, T.A L 
, 

IN.IT.IAL / ZoE, ACCUM I 

P RAe N,r): I Ip.R,E,V AceT, Mm. I 

020£ 
, 

A,C,C,T,. N,(J, • I 

0216 I SET UP EO,IT. I 

0216 I 
I 

I I 
I 

IT,(j, T.A L I A. C, C, U,M, • .4 M,(J,lj N To I 

ALAST. C,A R D (J, 

~7. 
PRA CN~: SAME ,A C C,T.. N, fb,. () 

0,2 /,6, 
02,/6, 

S YES 
JIN,rJ,. - S,P,A C E. /, LIME, 

I SET. /J,P, EDIT. 
I 
I 

I A SET /JP, S,KJ P. I 
I Ip,R I N, To AND S,K,l P. I 

I 
I 
I 
I 

- -
point in the card-reading cycles is reached. Since 
one starting point will have been passed, we must 
wait for another, so that the reading of another card 
after printing will not begin until 150 ms after the 
end of reading the card before printing. The effec­
tive time for reading five cards and printing the sum­
mary line is therefore 375 + 150 = 525 ms. With 
2000 groups of five cards each, the total time to do 
the job is thus 

2000 X 525 ms = 1,050,000 ms = 1050 sec = 17.5 min 



CHAPTER 8 

1. 

(AI OPERAND 

LINE COUNT LABEL OPERATION 
ADDRESS 

5 6 7 8 13 14 16 17 

o I 0 STA RT 

I 8 0 ENID5T ART 

(SIOPERAND 

ANSWERS TO SELECTED EXERCISES 193 

CHAR. 
ADJ. 

g d 

Page No. ~ of __ _ 
I 2 

COMMENTS 

55 

~ _.l.-+--.L-L---'---'---'---I--'--L" -f--'---'---'--'--'----'--'----L_l--f---1--'---'---'------'--'--.C.--L--...:. ... -- _.- ---

5. In the path coming out of the box "Compare Part 
Numbers" labeled M > T, insert a test to insure that 
the transaction code is a zero. If it is, set up the trans­
action information in master-record format, PUT the 
record in the new master tape, read another card, and 
return to the comparison. If the code is not zero, 

write a bad code message. If such an addition record 
should happen to have the same part number as a 
master record in the master file, the classification code 
test will prevent writing it. Modifying the program 
should not be difficult; in the interest of space, it is 
not shown. 



194 IBM 1401 PROGRAMMING 

7. 

IBt.1 0 0 o FORM X24·1350·1 
PRINTED IN U.S.A. 

Program 
Identification ' 

Programmed by 1401/1410 AUTOCODER COOl NG SHEET 76 80 

Oate ___ Page No. LL...J of __ 
I 2 

Line Label Operation OPERAND , 56 1516 2021 25 30 35 40 45 50 55 60 65 70 

o I START l ¢PE.~ A B C 
02 : IG,ET A 
03 

I GET 11 
04 COM.P : C A EMPN.¢. BE IJ.PM.¢' C,¢,MPARE EMP NUMBERS 
05 : Bl BPUr BRANCH IF 8 IS lOW 
06 APIJT : PUT IA .•. C 
01 : GET A I I I I I I 

08 81 I NJ/.P APUT SWITCH 81 j 

I 8 C,¢MP 09 I 

10 82 1 NJiP /iALT E.N.DLF R.EE.L ENTRY F.¢.R A 
I I 

I Mew B,R,A,N,C,H,,A/, , , ,s ET ,S,W,IT,CH,E,S, ,A I, , , I I I I I , , 
I 2 : Mew. B,RA,MC,N, A,2 AND A 2 , ,G,~ ,T,~ B,p,UT 
I 3 BPIJT. , 

PUT B C, , I I I I I I I I I I I I I I I I I I I I I I I I I I 

I 4 : GET 8. 
AI I N,(jP BPUT SWITCH AI I 5 ..1. 

I 6 
I 8 C,¢.MP 

11 A2 I Nlj,P HA,LT E.ND ,@J, REE.L ENT.RY F.¢.R 8 I 
I MCW B.RANCH .. 81 SET S.WITCHES 81 18 I 

I 9 
, 

MCW IB,RA Nell B2 ANO 82 
20 : 8 APUT. 

HALT I II HA,L,T, , 2 I I I I I I , I I I I , I I I I I I I 

2 2 B,RANCII. Dew. @.8fi 
2 3 

I EN.D hS,TA RT. 
2 4 : I 

I -



ANSWERS TO SELECTED EXERCISES 195 

CHAPTER 9 

1. 

IB}.10 0 o fORMX24·1350·1 
PRINTED IN U.S ..... 

Program 
Identification , 

Programmed by 1401/1410 AUTOCODER CODING SHEET 76 80 

Date ___ Page No.W of __ 

Line Label Operation OPERAND 
b 56 1516 .2021 25 30 35 40 45 50 55 60 6S 70 

o I I MeW TWP .•. MULT+6 SET UP AND 
o 2 

I MPY. KEY .M.UL T ,MU,L T./.PL. Y. .K.EY. .BY. .a. 2 
o 3 

I ADO BASE MUL T-/ ADO, 8.A5.E ADORE.SS 
04 • : MCW MUL T- / OISKAJ)-I SET. :UP SEl:.K A OOLRESS 
05 : 50. DISKA.D-7 SEEK. TRACK. 
06 : RO D.I5KAO-7 ,R.EAD DISK 
07 : .2 
o a I .2-
011 : f 
I 0 TW,¢, : Dew. 2 
1 I BASE I Dew. 50000 
I 2 MULT I Dew 0.0.00.0.00. 
I 3 OISKAo. Dew. ooo,o,o,Oo,Oll. . , , , I I , , , , I . • • rJ.R.o,U,B ,AlA RK. TO RIGHT 
I 4 : 

I . -

·3. 

IBJ10 0 o fORM X24·13SQ·l 
PRINTED IN U.S.A. 

Program 
Identification , 

Programmed by 1401/1410 AUTOCODER CODING SHEET 76 80 

Date ___ Page No. LL.l of __ 
I 2 

Line Lobel pperation OPERAND , 56 1516 2021 25 30 35 40 45 50 55 60 65 70 

o I : SW KEY-2 KEY-5 C(J.MPUTE 
o 2 

I MeW K E Y-:6 W¢.RK. T.R.ACK 
o 3 : ADO KEY-3 W.¢.RK ADDRESS 
04 : ADD KEY. W¢.RK 
05 

I Sw. W¢RK-2 3 DIGITS .¢,NLY 
06 : Mew W.¢.RK. O£5KAD-2 M,rJVE. T¢ DISK A ODRES5 
07 : elf W.¢.RK.-2 
08 

I 50 DI5KA.D-7 SEEK TRACK 
09 : RD 015K.Ao.-7. READ TRACK. ZER/l 
I 0 

I CW K.E Y-:2 .K.E.Y- S 
I I : IMCJV F.I.R.Sr: ABC INlT [ AL [ZE L ¢.¢P ADDRESS 
I 2 ARC : C 0.00.0 KE.Y. F.IND MA,T,C,H.I,Nli. K,E~ 
I 3 

, BE F,lN.D. 
I 4 

I AfJ,D TEM. ABC+3 ,M¢DI FY ADORESS I 

I 5 : B ABC N.t}. TEST-ASSUME WILL BE FINO 
I 6 FINO I 5W A 8.C+.1. SET UP ADDRES$, 
I 7 : Mew ABC +3, f)EF+3 ,¢,F SECTrJR 
I 8 

I CW ABC+! #.IJMBE.R. 
I 9 

I SW D.ISKA.D -/ SET UP I 
I ~CW 0.0.00 o IS.K.A 0-/ TRACK, 20 I 
I CW D.lSKA,O-./, , , .ADlJRE.55 2 I I . I , , , I , I I , I , 
I RD DISKA1J-S R.E.AD COR.RE.CT TR.ACK 2 2 I 

23 
I 

I -





INDEX 

A-address, 33 
A-address register, 40, 41 
A-register, 41 
Absolute address, 47, 48 
Access arm, 123 
Accumulator, 10, 68 
Actual address, see Absolute address 
Add instruction, 43 
Address, 31, 32, 39, 47, 111 

disk storage, 125, 132 
Address modification, 75, 79 
Address part of instruction, 33 
Algebraic operations, 44, 68 
Ampersand, 90 
Assembly, 50 
Assembly listing, see Post listing 
Augmented operation code, 111 
Autocoder, 47, 111, 126, 151, 167 

B-address, 33 
B-address register, 40, 41 
B-box,84 
B-register, 40, 41 
Backspace Tape instruction, 107, 108 
Batch processing, 10, 122 
Binary digit, 29 
Bit, 29, 103 
Blank (character), 34, 36, 90 
Block, magnetic tape, 103, 112 
Block count, 112 
Block diagram, 3, 7, 8, 69 
Blocking, of tape records, 112 
Blocking factor, 112, 120 
Body of control word, 90 
Branch instruction, 48, 49, 57, 62, 63 
Branch If Character Equal instruction, 

119 
Branch If Indicator On instruction, 44, 

62, 64, 66, 94, 108, 129 
Branch If Word Mark and/or Zone in­

struction, 67, 68 
Brush, 23 
Buffering, 97 

Calcula tion, 2 
Card codes, 170 

Card column, 13 
Card loader, 101 
Card punch, 7 
Card punching, 18, 95, 161 
Card reading, 17, 33, 95, 153, 161 
Card to disk routine, 134 
Card to tape, 20 
Card verifier, 7 
Carriage control, 64, 92 
Central processing unit, 16 
Chain Addition Program, 134 
Chaining, disk storage, 132 

of instruction addresses, 42 
Chain Loading Program, 134 
Chain Maintenance Program, 134 
Chain printing mechanism, 18, 19 
Channel, carriage tape, 92 
Character, 14, 29, 32 
Character adjustment, 49 
Character coding, 29, 103, 104, 170 
Character density, magnetic tape, 105 
Character rate, magnetic tape, 105 
Checking, see Error checking 
Checkout, program, 3, 146 
Clear Disk Storage routine, 134 
Clear Storage instruction, 36, 37 
Clear storage program, 101 
Clear Word Mark instruction, 34, 35 
Closed subroutine, 100 
CLOSE macro-instruction, 112, 114, 161 
COBOL, 154, 156 
Coding, 3, 150, 154 
Collating, 3, 71 
Collator, 5, 24 
Color stripe, 14 
Column, card, 13 
Comma, 90 
Comments, 59, 159, 160 
Compare instruction, 66, 67, 68 
Comparison, 64, 66 
Compatibility, 21 
Compiler, 111 
Computation section of loop, 79 
Conditional branch, 62, 154, 158 
Console, 1401 Processing Unit, 17, 101 
Control card, 101 

Control Carriage instruction, 92, 93, 96 
Control field, 2, 10 
Control level, 10 
Control panel, 15, 26 
Control section, 23, 40 
Control total, 8, 20, 113, 141 
Control Unit instruction, 107 
Conversion, file, 4, 141, 148 
Core, 29 
Corner cut card, 14 
Count field, 49 
Credit amount, 90 

D-character, 33, 41, 62, 111 
DA macro-instruction, 116, 120 
Data division, 154, 157, 159 
Da ta processing, 2 
DC pseudo-instruction, 52 
DCW pseudo-instruction, 49 
Deblocking, 112 
Decimal point, 90 
Decision, 3, 33, 151 
Decision table, 151 
Define Area macro-instruction, 116, 120 
Define Constant, 52 
Define Constant with a Word Mark, 49 
Define laCS macro-instruction, 112 
Define Symbol, 50 
Define Tape File macro-instruction, 

112, 113, 118 
Density, magnetic tape, 105 
Desk checking, 146 
Detail file, 5 
DIOCS macro-instruction, 112 
Disk file utility routines, 134 
Disk storage, 122 
Disk storage addressing, 125, 132 
Disk storage instructions, 125 
Disk-to-card routine, 132 
Disk-to-tape routine, 134 
Documentation, 149 
Dollar sign, 90 
DS pseudo-instruction, 50 
DTF macro-instruction, 112, 113, 118 
Dual level sensing, 21 

197 



198 INDEX 

E-phase, 41, 75 
Early card read, 95 
Editing, 2, 20, 89 
Effective address, 86 
End-of-reel spot, 64, 105 
END pseudo-instruction, 50, 54, 101 
Environment division, COBOL, 157 
Equal compare, 64,66 
EQU instruction, 116 
Error checking, 17, 18, 28, 64, 103, 141 
Error routine, 114 
Execute phase, 41, 75 
Execution of instructions, 41, 75 
Expanded print edit, 91 
Extension, of an amount, 6, 11, 26 
External storage, 31 

Field, 14, 31 
File, 2 

magnetic tape, 106 
File conversion, 4, 141, 148 
File protection ring, 106 
Fixed length record, 112 
Fixed word length, 31 
Flow chart, 3, 7, 151 
Format, 89 
Form control, 92 
Form design, 89, 146 
FORTRAN, 152 
Full track read, 126 
Function, FORTRAN, 154 

GET macro-instruction, 112, 114, 161 
Grocery wholesaler example, 135 
Group mark, 106, 110, 111, 116, 126 

Halt instruction, 66, 70 
Hardware, 13 
Hash total, 113 
Head, magnetic tape, 104 
Header label, 113 
Heading line, 94 
High compare, 64, 66 
High-Low-Equal compare device, 66 
High-Order position, 39, 51 
Hole count, 18 
Home record, in disk storage, 132 
Horizontal check character, 104 

I-address register, 41 
I-phase, 41, 75 
IBM 83 Card Sorter, 23 
IBM 85 Collator, 24 
IBM 729 Tape Unit, 21, 105 
IBM 1301 Disk Storage Unit, 122, 125 
IBM 1401 Data Processing System, 1, 

16 
IBM 1402 Card Read Punch, 17, 94, 95 
IBM 1403 Printer, 18, 92, 96 
IBM 1405 Disk Storage Unit, 21, 122 
IBM 1407 Console Inquiry Station, 22, 

23 

IBM 7330 Tape Unit, 21, 105 
IBM Charting and Diagramming Tem-

plate, 7 
IBM punched card, 13 
Indexed disk storage, 133 
Indexing accumulator, see Index reg-

ister 
Index register, 84 
Initialization Section of loop, 79 
Input/Output Control System, 110, 111, 

113, 161 
Instruction, 31, 33, 38, 63, 75, 163 
Instruction phase, 41, 75 
Internal storage, 31 
Interpreter, 14 
Interrecord gap, 103, 105 
Inventory control example, 116, 127, 

139, 152, 161 
IOCS, see Input/Output Control Sys­

tem 

Key, see Control field 
Keypunch, 7 

Label, tape, 113 
Label table, 53 
Last card switch, 63, 64, 68 
Line number, 51 
Linkage, subroutine, 100, 160 
Listing, 2 
Literals, 111, 159, 160, 161 
Load button, 101 
Load Characters to A Word Mark, 54 
Load point, magnetic tape, 105 
Location, 31 
Location counter, 53 
Loop, 75, 78 
Low compare, 64, 66 
Low-order position, 32, 51 

Machine-oriented language, 154 
Macro-instruction, 106, 111, 113 
Magnetic core, 29, 32 
Magnetic tape, 18, 23, 103 
Master file, 2, 19, 116 
Master file creation, 141, 148 
Memory, 31 
Memory dump routine, 101, 147 
Merging, 3 
Minus sign, 30, 90 

. Mnemonic Operation code, 48, 111, 163, 
167 

Modification section of loop, 79 
Move Characters and Edit instruction, 

55, 58, 90 
Move Characters and Suppress Zeros 

instruction, 63, 65, 89 
Move Characters to A or B Word 

Mark instruction, 33, 34 
Multiply instruction, 55, 56 

Negative quantity, 90 
No-Operation instruction, 78 

Normal punch pocket, 18 
Normal read pocket, 18 
Numerical bits, 29 
Numerical punch, 13 

Object program, 47, 50, 52, 112, 154 
OP-register, 40 
OPEN macro-instruction, 112, 113, 161 
Open subroutine, 100 
Operating instructions, 149 
Operation code, 33, 48 
ORG pseudo-instruction, 53 
Origin, 53 
Overflow, 64 
Overflow record, in disk storage, 132 

Page heading, 94 
Page number, 51 
Parallel operation, 148 
Parity bit, 29 
Parity checking, 21, 30, 103 
Partial chaining, 42 
Parts explosion and summary example, 

70 
Pass, 24, 53 
Payroll example, 54 
Phase, of instruction execution, 41 
Photo-sensing markers, magnetic tape, 

105 
Picking sequence, warehouse, 135, 136 
Pilot operation, 148 
Plus sign, 30 
Post listing, 50, 147 
Print area, 36 
Printer carriage control, 92 
Printing, 18, 96, 161, 154 
Print storage, 64, 98 
Procedure design, 1 
Procedure division, COBOL, 154, 157 
Procedure-oriented language, 154 
Procedures manual, 149 
Processing time, 95 
Processing unit, 16, 23, 40 
Processor, 47, 50, 52 
Program, 3, 31 
Program checkout, 146 
Program identification, 51 
Program loading, 101 
Programming, 3, 151 
Program switch, 77, 116, 117 
Pseudo-instruction, 52 
Punch a Card instruction, 35, 36, 95 
Punch area, 35 
Punch feed read, 18 
Punch release, 95 
Punch start time, 95 
PUT macro-instruction, 112, 114, 161 

RAMAC, 123 
Random· access file processing, 10 
Random access storage, 4, 10, 21, 23, 

122 



Read a Card instruction, 35, 36, 93, 94 
Read and Punch instruction, 97 
Read area, 35 
Read Disk instruction, 126, 127 
Read release, 95 
Read start time, 95 
Read Tape instruction, 107 
Record, 2 

magnetic tape, 103, 112 
Record count, 112 
Reel, magnetic tape, 103, 106 
Reflective spot, magnetic tape, 105 
Register, 40 
Relative sensitivity level, 104 
Report, 89, 154, 156 
Report file, 2 
Report Program Generator, 154 
Restart procedure, 113 
Rewind, magnetic tape, 105, 108 
Rewind Tape and Unload instruction, 

109 
Rewind Tape instruction, 108, 109 
Rounding, 49 
Routine, see Program 
Run manual, 149 

Sales statistics example, 4, 11 
Sector, disk storage, 123 
Seek Disk instruction, 125, 126 
Select Stacker instruction, 72 
Sense switch, 64 
Sequential access file, 4 
Sequential file processing, 4, 10, 122, 143 
Set Word Mark instruction, 34, 35 
Sign, 30, 43, 68 
Skip and Blank Tape instruction, 108, 

109 
Skipping, of form, 92, 96 
Sorter, 5, 23 
Sorting, 2, 5, 10, 19, 23, 71, 116, 122, 142 
Source data, 2, 7 
Source program, 47, 50, 52, 112, 152, 154, 

157 

Spacing, of form, 92, 96 
Speed, see Timing 
SPS, see Symbolic Programming Sys-

tem 
Stacker selection, 18, 28, 71 
Stacking, 7, 18 
Start and Stop time, magnetic tape, 105 
Start button, 63 
Status portion of edit word, 90 
Storage, 31 
Storage of instructions, 38 
Storage print routine, 101, 147 
Store B-Address Register instruction, 

100 
Stored program computer, 75 
Subroutine, 100, 160 
Subtract instruction, 44 
Summarization, 2 
Summary line, 94 
Switch, program, 77, 116, 117 
Symbolic address, 47 
Symbolic instruction, 52 
Symbolic Programming System, 47, 52, 

101, 151, 154, 163 
System analysis and design, 1, 28, 151 

Tape, carriage, 92 
Tape blocking, 112 
Tape-controlled carriage, 64, 92 
Tape head, 104 
Tape label, 113 
Tape mark, 105, 108 
Tape to card, 20 
Tape-to-disk routine, 134 
Tape unit, 105 
Template, charting and diagramming, 7 
Test data, 147 
Testing, program, 3, 146 
Testing section of loop, 79 
Three-character address, 32, 48, 53 
Timing, input and output, 17, 94, 99, 

171 
instruction, 99, 171 

INDEX 199 

Timing, magnetic tape, 105, 171 
program, 98 

Tracing, 148 
Track, disk storage, 123 
Trailer label, 112 
Transaction file, 2, 4 
Transition card, 54, 101 
Two-gap head, 21, 104 

Unconditional branch, 49, 62, 154, 159 
Unequal compare, 64, 66 
Unit record equipment, 10 
Unmatched detail, 5, 27 
Unmatched master, 5, 71 
Updating, of files, 2 
Utility programs, 100, 101, 134 

Variable instruction length, 33 
Variable length record, 112 
Variable word length, 31 
Verifier, 7 

Wholesale grocery example, 135 
Word, 31 
Word mark, 29, 30, 32, 33, 37, 39, 62, 70, 

101, 106, 127, 137 
Work-flow chart, 7 
Working storage, 112 
Write a Line instruction, 36, 96, 98 
Write and Branch instruction, 49 
Write and Punch instruction, 97 
Write and Read instruction, 96 
Write Disk Check instruction, 126, 129 
Write Disk instruction, 126, 128 
Write, Read, and Punch instruction, 97 
Write Tape instruction, 106, 107 
Write Tape Mark instruction, 107, 108 

Zero and Add instruction, 80 
Zero suppression, 55, 62, 89 
Zero zone, 13 
Zone bits, 29, 43 
Zone punch, 13 



A GUIDE TO FORTRAN PROGRAMMING 

DANIEL D. McCRACKEN, McCracken Associates, Inc. 

This book provides a quick, effective way to master Fortran, an efficient and widely 
used computer language. It provides a grasp of Fortran programming that will 
enable you to solve scientific or engineering problems with a computer-no matter 
how limited your understanding of the computer itself and its operation. 1961. 
88 pages. 

PROGRAMMING BUSIN~SS COMPUTERS 

DANIEL D. McCRACKEN, McCracken Associates, Inc., and 

HAROLD WEISS and TSAI-HWA LEE, 

both of General Electric Company, Phoenix. 

An introductory book that covers programming from analysis to coding with an 
emphasis on business data processing, written by people who have had first hand 
experience in procedures, analysis, programming, coding, machine operation, 
teaching, and machine design. While suitable for teaching basic programming, 
it has a wealth of organized material on advanced techniques. 1959. 510 pages. 

DIGITAL COMPUTER PROGRAMMING 

DANIEL D. McCRACKEN 

I 
/ 

Here Mr. McCracken gives a general introduction to computers plus the practical 
details necessary to work with specific machines. Carefully avoiding technical 
jargon, he clears up many of the points that are especially troublesome to new­
comers to automatic computing and gives the basic elements necessary to a sound 
understanding of current and future computer programming. 1957. 253 pages. 

JOHN WILEY & SONS, INC., 440 Park Avenue South, New York 16, N. Y. 

Kroch's & Brentano's 

5 .75 PM06 

..... Chicago . Evanston . Old Orchard 
-- _ _ _ J 

. .. 


